
Saarland University
Faculty of Mathematics and Computer Science

Department of Computer Science

Masterthesis

XS-Leaks: How affected are
browsers and the web?

submitted by

Jannis Rautenstrauch
on November 10, 2021

Reviewers

Dr.-Ing. Ben Stock
Dr. Giancarlo Pellegrino

https://www.uni-saarland.de
https://saarland-informatics-campus.de/

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement

I hereby confirm that I have written this thesis on my own and that I have not used any
other media or materials than the ones referred to in this thesis

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die
Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public
by having them added to the library of the Computer Science Department.

Saarbrücken,
(Datum/Date) (Unterschrift/Signature)

Acknowledgements

Foremost, I would like to thank my supervisors, Dr.-Ing. Ben Stock and Dr. Giancarlo
Pellegrino, for the opportunity to write this thesis with them at the CISPA Helmholtz
Center for Information Security. The regular discussions with them shaped the path of
this thesis, and their valuable feedback greatly improved this work.

In addition, I would like to thank my friends Florian Hantke and Maja Toebs for
proofreading this thesis and for their emotional support.

i

Abstract

Cyberattacks causing considerable damages to businesses and users are in the news
almost every week. Cross-Site information leaks (XS-Leaks) are one type of web attack
targeting users. In such attacks, victims visit a malicious website that infers information
about them on other sites by abusing browser side-channels. Inferred information can
reach from access detection to deanonymization. The scientific community has known
XS-Leaks since the 2000s. Still, there is not enough information available to estimate how
big of an issue such attacks are for the web ecosystem today. This thesis aims to close this
knowledge gap with two approaches. One approach is evaluating how different browser
side-channels behave in modern web browsers by observing several channels for 387,072
responses. The other approach is scanning as many websites as possible for vulnerable
URLs using a newly created fully automated pipeline. The results show that browser
behavior significantly differs for many channels. Studying the differences, we discovered
ten security-relevant bugs and reported them to two browser vendors. With the second
approach, we detected vulnerable URLs on 258 out of 352 tested sites, presenting the
largest study of XS-Leaks to date. Based on the results of this thesis, we conclude
that XS-Leaks pose a considerable problem for the web ecosystem, as most websites
are currently vulnerable, and millions of users could be heavily affected. However, the
results also show that websites have the means to be XS-Leak free and that getting rid
of differing edge case behavior in browsers could reduce the attack surface by about 50%.
We think that introducing more secure defaults in browsers and increased adoption of new
security features by web developers could make XS-Leaks irrelevant in the foreseeable
future.

iii

Contents

Acknowledgements i

Abstract iii

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background 5
2.1 General web technologies . 5
2.2 XS-Leak attack overview . 10
2.3 Browser automation . 15

3 XS-Leaks in browsers 17
3.1 Scope . 18

3.1.1 Tested browsers . 18
3.1.2 Tested leak methods . 19
3.1.3 Tested responses . 20

3.2 Test browser framework . 22
3.2.1 Echo application . 23
3.2.2 Attack-page generator . 23
3.2.3 Browser automation . 24
3.2.4 Leak channel generalizer . 24

3.3 Test browser framework evaluation . 25
3.3.1 Timing, timeouts and impossible results 25
3.3.2 Reliability evaluation . 27

3.4 Leak channel results . 28
3.4.1 Browser inconsistencies . 30
3.4.2 Working leak channels and trees 30
3.4.3 Test responses application . 33
3.4.4 Security relevant bugs . 34

4 XS-Leaks in the wild 37
4.1 Scope . 38

4.1.1 Tested websites and crawl settings 38

v

vi Contents

4.1.2 Considered state information . 39
4.1.3 Considered leak channels and browsers 40

4.2 Does-it-leak pipeline . 41
4.2.1 State generator . 43
4.2.2 Stateful crawler . 44
4.2.3 Static pruner . 45
4.2.4 Dynamic confirmator . 46

4.3 Pipeline Evaluation . 47
4.3.1 State creator . 48
4.3.2 Stateful crawler . 49
4.3.3 Static pruner . 50

4.4 Results . 53
4.4.1 Headers and responses . 53
4.4.2 Response pairs . 59
4.4.3 Cookie statistics . 63
4.4.4 Vulnerable endpoints . 65
4.4.5 Potential issues . 71

5 Discussion 77
5.1 Ethics . 77
5.2 Limitations . 79

5.2.1 XS-Leaks in browsers . 79
5.2.2 XS-Leaks in the wild . 81

5.3 Related work . 83
5.4 Defenses and call to action . 86

6 Conclusion 87

Bibliography 89

A Inclusion methods and leak methods I

B Online materials and browser settings III

List of Figures

2.1 Structure of a Uniform Resource Locator (URL). 6
2.2 Schematic view of how a server can distinguish users on the basis of cookies. 8
2.3 Steps of an XS-Leak attack. 14

3.1 Overview of the test browser framework. 22
3.2 Decision trees for the leak channel events-fired_set_img. 31
3.3 Decision trees for the leak channel

global-properties_hasOwnProperty_script. 32
3.4 Screenshot of the test responses application. 33
3.5 Decision trees for the leak channel object-properties_mediaError_audio

in Chrome. 36

4.1 Overview of the does-it-leak pipeline. 42
4.2 URL path and query length histogram of all reported vulnerable URLs. . 75

vii

List of Tables

2.1 Possible relations of two origins. 7

3.1 Considered properties and options of the response space. 21
3.2 Loading and completion times for all inclusion methods in milliseconds. . 26
3.3 Matrix of all tested leak methods and inclusion methods. 29

4.1 URLs and tests per site before and after pruning. 50
4.2 Static pruner false positive evaluation. 51
4.3 All requests saved by the stateful crawler by HTTP verb and state. 54
4.4 General statistics of the collected responses. 55
4.5 Ten most common values occurring for both states for the considered

properties. 56
4.6 All status-codes for both states. 58
4.7 State-dependent URLs according to different definitions. 59
4.8 Average number of leak URLs per basic pruned URL. 60
4.9 Twenty most common differing response pairs for all considered properties. 61
4.10 Usage of security flags for cookies by individual cookies and sites. 63
4.11 SameSite settings for cookies observed on sites. 64
4.12 Vulnerable URLs by inclusion methods and leak methods for browsers

and sites. 66
4.13 Summary of vulnerable URLs discovered by site. 66
4.14 Vulnerable leak channels by browser and site. 69
4.15 Number of unique observation pairs by site for each channel for the

complete data and the potential false positives. 73

A.1 List of inclusion methods considered in this thesis. I
A.2 List of leak methods considered in this thesis. II

ix

Chapter 1

Introduction

In 2020, an average internet user between the age of 16 and 64 spent 6 hours and 54
minutes on the internet per day [22], more than ever before. All kinds of applications
for private activities such as communication platforms, social media, music streaming,
blogs, and games use the web as their primary access point. In addition, people perform
many professional activities such as writing text and code, reading reports, and attending
virtual meetings on the web. In short, our modern life would be unthinkable without the
web as we know it today.

With the popularity of the web as an application platform, the web attracts much
attention from criminal groups and security researchers. Over the years, researchers
discovered many attacks targeting the server-side of the web, such as SQL injections [89]
or path traversal [68]. Nowadays, attacks targeting the client-side of the web such as
Cross-Site Scripting (XSS) [61] or Cross-Site Request Forgery (CSRF) [60] are common as
well. These attacks are not only theoretical vulnerabilities but many of them are actively
exploited, causing substantial financial losses for businesses and users. For instance,
Cybersecurity Ventures estimates that global cybercrime will deal more than 10 billion
US-Dollars of damage by 2025 [59].

One web attack targeting users is called Cross-Site information leak (XS-Leak) attack.
Although this attack has already been known under various names since the 2000s such as
timing attacks on privacy [31], login detection attacks [41], deanonymization attacks [90]
and Cross-Site Search Attacks [38], it only gained traction recently [92, 88, 39]. The
general idea of the attack is to abuse browser side-channels to infer user state information
on other target sites. First, a victim visits an attacker-controlled website. On this website,
the attacker performs a cross-site request to a target site. The browser automatically
attaches the victim’s information, such as cookies, to the request. The malicious site then
observes the browser side-channels to infer state information of the victim. An attacker

1

2 Chapter 1 Introduction

can then use the inferred information for various malicious purposes. As one example,
consider the following. A user has an account on an illegal video-sharing website and is
currently logged in. This user receives an e-mail containing a link in another tab. Next,
the user opens the link in the same browser. The link points to an attacker-controlled
site. In the foreground of the attack page, there is some non-malicious content. In the
background, the website requests the URL /profile/my/img.png from the video-sharing
site. The browser attaches the cookies and performs the request. The server recognizes
the user based on the cookies and returns the corresponding profile image. The browser
then fires a load event on the malicious website. The attacker now knows that the user
has an account on the illegal video-sharing site. The attacker can infer this because
requests from users without an account do not return a valid image and would generate
an error event. Finally, the attacker blackmails the user and threatens the user to pay
money to the attacker. Otherwise, the attacker will leak the information to the police.

Even though XS-Leaks have been known for a long time, many knowledge gaps still exist.
With the available information from previous research, it is hard to estimate how big of
an issue XS-Leaks are for the web ecosystem. It is also impossible to quantify the effect
recent actions of different browser vendors have had on XS-Leaks. Example actions were
shifting to SameSite Lax by default or introducing new security headers.

Most reports state that a leak method works for at least one example pair of responses
in one browser and version. For example, a response with a valid image body can be
distinguished from a response that has an HTML body and is otherwise the same by
observing the load and error events on image tags in Firefox 3 [41]. One does not know,
however, if the leak method works in other browsers and newer versions. One also does
not know the exact properties causing the observable difference. In the above example,
one could ask “Will all responses with a valid image body result in a load event or are
there additional restrictions on the status-codes or the headers?”, “Will all responses
with a non-image body result in an error event?”, “Do responses that neither generate a
load nor an error event exist?”, and “Is the behavior the same in different browsers and
versions?”. The answers to these questions enable the creation of groups of responses
that result in the same observation for every browser where every two responses from
two different groups form a distinguishable response pair. To fill the knowledge gap of
when precisely a leak method works, we formulate the following research question:

R1: Which groups of responses can different leak methods distinguish in
different browsers?

Additionally, we do not know how big of a problem XS-Leaks are in the wild. Questions
such as “How many dangerous response pairs do exist on websites?”, “Are defenses such

Chapter 1 Introduction 3

as SameSite cookies or Fetch metadata deployed widely and correctly, thus preventing the
problem for many websites?”, and “Which methods work often, and which methods do
not work in practice?” arise. With these additional questions in mind, we then formulate
the second research question:

R2: Which XS-Leak methods work how often on websites in the wild in
different browsers?

By answering these two questions, this thesis makes the following contributions:

• We present the first comprehensive analysis of which browsers can distinguish
which groups of responses using different XS-Leak methods. The results show that
most methods still work in all browsers, but significant differences exist between
the exact response groups browsers can distinguish.

• We report ten bugs related to XS-Leaks in two major browsers.

• We release a static tool that shows if and how two responses can be distinguished
in different browsers.

• We present the largest study on the prevalence of XS-Leaks in the wild, finding
XS-Leaks on a total of 258 sites.

• We release a dynamic pipeline to scan websites for XS-Leaks.

• We provide evidence for the claim that joint work of web developers and browser
vendors could greatly reduce the prevalence of XS-Leaks in the wild.

To conclude the introduction, we present the structure of the thesis. In chapter 2, we
explain the background on web technologies, XS-Leaks, and browser automation necessary
to understand this thesis. In chapter 3, we answer R1 by examining how different XS-Leak
methods behave for a large number of responses in several browsers. In chapter 4 we
answer R2 by presenting the largest to date study on the prevalence of XS-Leaks in
the wild with finding leaky URLs on over 250 websites. Then, in chapter 5, we discuss
the ethical consequences of the experiments, the limitations of a fully automatic test
pipeline, relate to previous work, and point a way out of the XS-Leak problem. Finally,
in chapter 6, we conclude this thesis.

Chapter 2

Background

Cross-Site information leaks (XS-Leaks) can affect every web user in any web browser when
visiting a malicious website. Background knowledge about the web and its security model
is necessary to understand why and how XS-Leak attacks work and what consequences
they can have. Additionally, to understand the chosen methodology, knowledge about
browser automation and web crawling is necessary.

In this chapter, we explain the core concepts needed to understand this thesis. The first
part explains the general web technologies involved in an XS-Leak attack. Then, the
second part explains XS-Leak attacks in detail, including why they are a severe issue in
today’s web ecosystem. Finally, the last part explains the browser automation techniques
needed to perform automated testing of XS-Leaks.

2.1 General web technologies

XS-Leaks are a security vulnerability in web applications that abuse features built into
web browsers. Knowledge about the web and its security model is needed to understand
why such attacks can occur. First, we explain what resource inclusions are and why
including resources from other websites is crucial to make the modern web work. Then,
we summarize the main security principle on the web, the same-origin policy (SOP), and
present how the web handles state information. Finally, we introduce additional security
features in browsers, including cookie security.

Resource inclusions: A modern website does not only consists of a single publicly
accessible text document as originally intended by Tim Berners-Lee [8]. It also contains
images, executable code, styling directives, and further resources. These interactive

5

6 Chapter 2 Background

https:// subdomain. domain. toplevel :443 /path ?query #fragment

Origin

Scheme Hostname Port Path Query Fragment

Figure 2.1: Structure of a Uniform Resource Locator (URL).

websites with a mix of resources are not preassembled on the server but built together in
the browser and are often tailored to individual users.

When a web browser requests a website, it usually first fetches a HyperText Markup
Language (HTML) [45] document from the webserver. This document represents the
entry point of the website. This HTML document can include many other resources,
such as images or videos, by embedding them with a corresponding HTML tag and
source Uniform Resource Locator (URL). The browser then fetches all resources and
embeds them accordingly. For example, the browser displays a returned image. Complete
websites can also be embedded using the IFrame tag. A document can even include
scripts that can execute arbitrary code. These scripts can dynamically add or remove
resources, directly request resources using fetch, or open new browser windows or tabs
using window.open. Table A.1 in the appendix lists all inclusion methods used in this
thesis.

All included resources can either belong to the same site as the initial HTML page or
external sites. The ability to include resources from any web server makes it possible to
easily combine resources to create the interactive experiences we know the web for today.
For example, a modern blog can include several social media like and share buttons,
several high-quality images from the web, a managed comment system, and external ads.

Same-origin-policy: The ability to include resources from any web server is integral
to create the modern web experience. However, it also means that web developers
and browser vendors need to consider the security implications of this feature as pages
belonging to different websites should not be able to access each other freely.

To reason about the security boundaries of the web, we have to define several terms.
Figure 2.1 illustrates the structure of a Uniform Resource Locator (URL). A URL consists
of a scheme https, a hostname subdomain.domain.toplevel, a port 443 (when omitted a
default value for each scheme exist), a path /path (can be empty), and optionally query
parameters ?query and a fragment #fragment. An origin is the combination of scheme,
hostname, and port and usually belongs to one web application. The hostname can
consist of arbitrary many levels, for example, deep.demo.websec.saarland. A site is the

Chapter 2 Background 7

Origin? Site? Explanation
Origin A Origin B

https://demo.websec.saarland:443 https://demo.websec.saarland:443 Same-Origin Same-Site Exact match
https://demo.websec.saarland Same-Origin Same-Site HTTPS default port is 443
http://demo.websec.saarland:443 Cross-Origin Same-Site Different scheme
https://demo.websec.saarland:80 Cross-Origin Same-Site Different port
https://not.websec.saarland:443 Cross-Orgin Same-Site Different subdomain
https://secweb.saarland:443 Cross-Origin Cross-Site Different site

Table 2.1: Possible relations of two origins.

combination of an effective top-level domain (eTLD) (e.g., .com or .github.io1.) plus
the part directly in front of it (websec.saarland in the above example). The site is often
called eTLD+1 and is what one business or organization controls.

Table 2.1 explains in what context two origins can be to each other in respect to site
and origin. A resource inclusion in a web document can be same-origin, same-site, or
cross-site to the origin of the embedding document. In the context of this thesis, we only
study cross-site attacks as they can be performed on every website. Same-site attacks
are usually more powerful but only work in some instances where an attacker can gain
control over the targeted website’s sub- or sister domains.

As stated before, content delivered on the web is often tailored towards a specific user or
a group of users and should not be available to everybody. For example, only the users
themselves should have access to their social media messages. Thus, it is of uttermost
importance that malicious websites requesting resources from other websites do not have
access to this private content. The most fundamental security mechanism on the web:
the same-origin policy (SOP) [63] achieves this isolation.

The same-origin policy dictates that resources from a different origin than the origin
of the requesting document cannot be directly accessed from the requesting document.
This policy makes it possible that a user can see an included cross-origin image, but the
JavaScript code running on the page cannot get its pixel values. In general, the policy
achieves its separation goals. However, it is essential to note that browsers share some
information with the embedding document for functionality reasons, and some exceptions
to the policy exist. For example, the embedding document has access to the dimensions
of an included image to adjust its representation. In addition, external scripts run under
the scope of the embedding document’s origin and not their origin. These intentional
relaxations of the SOP and additional unintentional bugs make XS-Leaks possible under
certain circumstances.

State on the web: A fundamental aspect of a modern web application is the ability to
retain state information. As a simple example, consider requesting a URL of a social

1See https://publicsuffix.org/list/ for a full list of eTLDs.

https://publicsuffix.org/list/

8 Chapter 2 Background

: sessid=secret_user_id_5

visitor_page

user_page

def home(request):
 state = request.cookies.get(sessid, None)
 if state is None:
 return visitor_page()
 else:
 return user_page(state)

POST https://webscec.saarland/register

?user=User5&pw=WFMtTGVha3M=

: sessid=secret_user_id_5

GET https://webscec.saarland

Hello User5,

What do you want to do today?

websec.saarland
1.

2.

Set-

GET https://webscec.saarland
Hello Vistor!

If you wan to customize this page,
please register at /register

websec.saarland

Figure 2.2: Schematic view of how a server can distinguish users on the basis of cookies.
The blue browser depicts an anonymous visitor. The red browser depicts a logged-in

user after finishing registration.

media platform. Such a request often returns a personal feed for a logged-in user and
redirects to the login page for an anonymous visitor. To deliver conditional responses,
a web server needs to know whether a user is in the logged-in state or the anonymous
state. The default protocol used on the web, the Hypertext Transfer Protocol (Secure)
(HTTP(S)) [34], was stateless. Thus, in the early days of the web, a web server could
not distinguish between requests from different users, preventing the development of
state-full applications.

A state transmission method is necessary to add state information to this protocol. This
method allows web servers to determine which state a request belongs to. The default
method used for transmitting and saving state information are cookies [7]. Other state
transmission methods such as HTTP Authentication exist [37]. However, these other
methods are negligible in practice and therefore excluded in this thesis. For cookie-based
state transmission, the server usually generates a random string the first time a user
visits a website and sends it along with the usual response to the browser as a session
cookie via the set-cookie header. The browser saves this cookie for the current site and
attaches this cookie to every request of this site. The server stores user information with
this cookie and returns different responses for different users. State information can be
anything, the preferred language of a visitor, whether the visitor wants to see the website
in dark mode or not, or a user identifier of a logged-in user. Figure 2.2 illustrates how
a server can distinguish a logged-in user from an anonymous visitor using the cookie
mechanism. A visitor that never visited the page before (blue browser) will not have
cookies attached to its request. A registered user (red browser) receives cookies when
registering or logging in. Later, these cookies are attached to every request enabling the
server to return a customized response.

Browser-related web security features: The same-origin policy (SOP) creates a mini-
mal security basis for websites. Many websites, however, have higher security requirements.

Chapter 2 Background 9

For example, they do not want to be embeddable on other sites. This section discusses
additional security features of browsers that are either active by default or that websites
have to opt-in. These features are usually not primarily designed to prevent or mitigate
XS-Leaks but still influence them heavily.

In recent times, browsers have been adding state partitioning as a new secure default.
In a state-partitioned browser, every top-level site gets access to its resources, such as
caches, instead of sharing them with all other sites. In this way, the partitioning of
resources offers protection against cross-site tracking and other attacks relying on shared
client-side resources [49, 64]. Another recently introduced feature is Cross-Origin-Read
blocking (CORB) [102]. This feature blocks suspicious cross-origin loads before they
reach the embedding website. For example, when embedding a JSON file into a script
tag, the browser replaces the JSON file with an empty resource. This feature aims at
mitigating micro-architectural side-channel attacks such as Spectre [51] as the resource
never enters the memory the website can access. These features apply to every response
from every site as they are build-in behavior in browsers.

Browsers also add information on the context of a request. A server can then check the
received information and not respond with private content when receiving a request from
an untrusted source. The first header to add such information was the referer header [35].
However, this header introduces privacy issues and can be stripped by proxies or be
empty for other reasons. Thus, web servers cannot reliably use it to protect against
XS-Leaks. Another header introduced as a better and less privacy-invasive header is
the origin header [67]. However, this header is also not attached to all requests, and
servers should not use it as the only defense mechanism. The third attempt at giving
servers more context on received requests is the family of Fetch metadata headers [32].
If Fetch metadata is correctly used, web servers can stop XS-Leaks by not delivering
state-dependent resources for untrusted requests. However, larger websites might face
challenges when trying to use Fetch metadata correctly as it might be hard to define
what trusted and untrusted requests are.

In addition to secure defaults and checking the request context, web servers themselves
can add security headers to a response to instruct the browser to behave more safely. An
old and well-known feature is the X-Frame-Options (XFO) header [80], which disallows
the framing of a document. This header is helpful to prevent clickjacking attacks, where
attackers trick users into clicking somewhere to perform unintended actions on their behalf.
Another header is X-Content-Type-Options (XCTO) [103] which is used to opt-out of
MIME type sniffing for style and script inclusions preventing some MIME Confusion
attacks [48]. The Content-Security-Policy (CSP) header [15] originally developed against
Cross-Site Scripting (XSS) [61] can now be used for a plethora of features (e.g., it

10 Chapter 2 Background

is also meant to replace the XFO header) and is still evolving. Unfortunately, not
only is it complicated for developers to deploy correctly [81], attackers can also use it
to detect if a redirect occurred or not [44]. Three new headers enhancing the same-
origin policy are Cross-Origin-Resource-Policy (CORP) [33], Cross-Origin-Opener-Policy
(COOP) [21], and Cross-Origin-Embedder-Policy (COEP) [20]. CORP can disable cross-
origin embedding similar to CORB for additional resources such as images. COOP
isolates documents opened using window.open from the opener and prevents the usually
allowed access between opening and opened site such as postMessages. COEPs is different,
as it applies to request performed on behalf of the current site and not on requests that
try to embed the resource. It works by blocking all loading of cross-origin resources that
do not explicitly opt into cross-origin sharing.

Cookies are the standard state transmission method used by most web applications [7].
By default, cookies get attached to every request belonging to the cookie’s site. Moreover,
JavaScript code running on that site can access them. The site that sets a cookie can
add several flags to change the default behavior. The HttpOnly flag disallows access
from JavaScript. The Secure flag makes sure that cookies are only added to HTTPS
requests and not to HTTP requests. The difference between HTTP and HTTPS is
that the latter uses an encrypted transportation channel. Thus nobody can read or
modify the transported data while in transit between browser and web server. This
flag prevents cookie hijacking attacks where network attackers try to read or modify
the cookies in transit [28]. The new SameSite flag can restrict the requests to which
the cookies are attached [58]. This flag is mainly meant to prevent Cross-Site Request
Forgery (CSRF) [60] but also affects many other attacks, such as XS-Leak attacks. The
old default behavior is None, meaning attach the cookies to every request belonging to a
site. Another possible value is Lax, which only attaches the cookies to same-site requests
and top-level GET requests. The last possible value is the Strict setting that only adds
the cookies to same-site requests. Recently, some browsers switched the default to Lax
when SameSite is not set explicitly and do not accept None without the Secure flag
anymore [17].

2.2 XS-Leak attack overview

The goal of every XS-Leak attack is to steal user information cross-site. First, an attacker
has to gather information about how a target website behaves. Then, the attacker needs
to prepare an attack page based on the gathered data. Finally, the attacker has to lure
victims on the created page. The attack page includes a cross-site resource of a target
site and executes code to obtain information about the included resource. Depending on

Chapter 2 Background 11

the observations, the attacker then infers the victim’s state on the target site, e.g., if the
victim is logged in or not.

In the following, we first introduce the web attacker threat model. Then, we list the
browser side-channels enabling the attacks and introduce the concept of leak channels.
Then, we summarize the concept of state-dependent URLs (SD-URLs) necessary to leak
user information using a leak channel. In the end, we describe why XS-Leaks are a severe
issue and what harm attackers can do with the inferred information.

Web attacker threat model: We use the web attack threat model formalized by Akhawe
et al. [4]. Web attackers can run web servers that deliver arbitrary content to users.
An average user cannot easily notice that an attack is ongoing in the background of a
site. If the malicious content hides behind good-natured content such as an online game,
even professionals have problems identifying the attack. They need to open the devtools
and recognize the malicious cross-site requests, which is not easy to do as most websites
perform many non-malicious cross-site requests. The attacker can either lure a specific
victim to their site by targeted phishing attacks or make their website popular and attack
many random users, depending on their goal.

The malicious website has the same capabilities as any other website loaded in the
browser. In particular, it can include cross-site resources and execute arbitrary code
to gain information about the included resources. For example, the site can embed a
cross-origin image and then get the dimensions of the included image. We highlight that
the attack does not need the capabilities of a network attacker. Particularly the attacker
cannot decrypt any HTTPS encrypted connection, perform DNS spoofing, or similar.
Notably, the attacker depends on the victim visiting their malicious site to start the
attack and otherwise cannot leak any information.

Leak methods: Due to the SOP, a document cannot directly access cross-site resources.
However, for many inclusion types, some limited access or information sharing is possible.
For example, a document embedding an external image can determine whether the image
loaded correctly or not. The document can use this information to display another image
or a custom error indication instead of the default broken image icon of the browser.
Table A.2 in the appendix lists all leak methods considered in this thesis. For more
straightforward representation, we divide the leak methods into four different groups:
events fired (EF), object properties (OP), global properties (GP), and timing (T). In the
following, we explain the typical characteristics of each group.

The first group is events fired (EF). For all inclusion methods using HTML tags, developers
can implement handler functions that get called when a specific event occurs on the

12 Chapter 2 Background

element. For example, browsers call the load event after a resource has finished loading.
The website can then execute code depending on the received event. Many of these
events are only fired under certain circumstances depending on the returned response.
For example, browsers only fire a load event for an image tag when they successfully
render an image. For a successful image rendering, the response must contain a valid
image in its body. Additional constraints such as no CORP header apply for cross-site
requests. In all other cases, the browser fires an error event. Thus, one can distinguish
between a response that returns an image and one that does not, using the events fired.

The second group is object properties (OP). For all inclusions methods using HTML
tags, one can get a reference to the included element. For window.open, one can get a
reference to the opened window. The IFrame element is unique, as one can get both
a reference through the HTML tag and directly to the “window” inside. One cannot
access all properties of the referenced object when it is cross-origin, but the browser
always shares some information with the embedding site. One example is that the image
dimensions can be accessed to allow dynamic adjustments on the page related to the size
of the embedded image. Another example is that one can access the number of frames of
a window reference.

The third group is global properties (GP). A document can access properties or add
handler functions to the global window object itself. For instance, an included style
sheet can change how a document looks. A document cannot directly access the rules of
a cross-origin stylesheet. However, it can query the browser how it is styled using the
window.getComputedStyle method and infer what rules are set by the included stylesheet
in this way. Another method is the window.onerror handler a document can define. This
handler gets called every time an error occurs in the main process. For example, if the
document now includes a script tag and the response is not a valid script, the browser
throws a parsing error, and the registered handler catches the error.

The fourth group is called timing (T). One can either measure the server and network
processing time or the client processing time. For the measurements, one can use events
that fire regardless of the returned content. If one measures the time between when a
resource is added and when the loading is finished, one knows how long it took to load
the resource, which can differ based on the state of the request. Alternatively, one can
measure the time between loading is finished and parsing is finished inferring information
about the size of the response.

Leak channels: For a more accessible presentation, we define the concept of leak
channels. A leak channel is the instantiation of a concrete leak method and an inclusion

Chapter 2 Background 13

method. As an example, events-fired_set_img is the channel that uses the set of events
fired on an image tag.

For a leak channel to work, at least two different observable outcomes for the channel
must exist. Also, these outcomes must depend only on the returned responses and not
on other factors. Some leak channels only have two possible outcomes, e.g., an image tag
can either fire a load event when loading was successful or fire an error event otherwise.
Other leak channels can have infinitely many outcomes. For example, image dimensions
can be any pair of numbers.

State dependent URLs: Many URLs on the web do not deliver static content and
change the response on various factors. For example, a news website has different
news articles on the front page depending on the time of the visit. Some websites
display a blocked in this country message depending on the location information of the
request. Other URLs return different content depending on the requestor’s state in the
corresponding web application, such as whether the requestor is logged in. For XS-Leaks,
one is usually only interested in the last factor, the requestor’s state.

The requestor’s state on a website can be whether the requestor is logged in or not. It can
also be whether they are a specific user or information about their accounts, such as their
age or gender. It can also be information for which no user account is necessary, such
as whether someone had visited the page before or consented to the use of third-party
cookies, even if they have no account. The web application usually identifies a user by
the received cookies and returns the corresponding response. We define state-dependent
URLs (SD-URLs) analogous to Sudhodanan et al. [92], as URLs that deliver different
responses for requests of different states.

An exploitable URL in the context of XS-Leaks must necessarily be an SD-URL, but
not every SD-URL can be exploited. Firstly, the attack page cannot differentiate every
difference in two responses as browsers only allow limited access to cross-site resources.
Secondly, the URL might be state-dependent for same-site requests only. However, due
to SameSite cookies or the use of Fetch metadata or similar mechanisms, the state
information is not transmitted to the server for cross-site requests, or the server does not
deliver state-dependent responses in these cases.

Exploitation and impact: Figure 2.3 demonstrates all the steps of a successful XS-Leak
attack. First, the attacker chooses a target application (cms.cispa.saarland) and finds
URLs that return different responses based on the attacker’s state. For this, the attacker
tests the website in several states and observes the responses. Next, the attacker chooses

14 Chapter 2 Background

1.
cms.cispa.saarland

GET /websec2021/dl/4/Lecture_01.pdf

Attacker Browser
GET /websec2021/dl/4/Lecture_01.pdf

Attacker Browser

(incognito)

Study
target

: CakeCMS=attackerID

200: Content-Disposition: attachment

302: Location: /materials/index

2. Prepare attack
page demo.websec.saarland

3.

Get victim to
visit

4.
: C

ak
eC

M
S

=v
ic

tim
ID

1. Click here

for money!

Infer
information
and exploit

2.
 G

E
T

/s
ta

tic
/d

em
o.

ht
m

l

6.
 V

ic
tim

 is
 lo

gg
ed

 in
!

Victim Browser

5.
 2

00
: C

on
te

nt
-D

is
po

si
tio

n:
 a

tta
ch

m
en

t

4.
 G

E
T

/w
eb

se
c2

02
1/

dl
/4

/L
ec

tu
re

_0
1.

pd
f

3.
 2

00
: a

tta
ck

 p
ag

e

Figure 2.3: Steps of an XS-Leak attack.

a leak channel that can distinguish between the observed responses, prepares an attack
page, and hosts it (demo.websec.saarland). Then, the attacker brings a victim to visit
the page, e.g., by sending out a phishing mail. Finally, a victim opens the attack page
that includes the target URL and infers the state information of the victim based on the
browser behavior, and sends the result to the attacker.

Following the successful state inference, the attacker can use this information to achieve
mischief. The impact can reach from login detection (used to perform more targeted
XSS or CSRF attacks) over targeted tracking and advertisements (e.g., based on your
inferred age or gender) to deanonymization (victim is the owner of account X). These
attacks are especially critical on privacy-sensitive sites, such as adultery sites, where the
gained information can be used for blackmailing. In oppressive countries, an attacker
could be a state actor trying to identify people that visited forbidden websites. As the

Chapter 2 Background 15

attack occurs inside the browser, encryption or additional privacy measures such as a
VPN [101], or the TOR network [95] do not prevent these attacks.

2.3 Browser automation

This thesis evaluates several browsers comprehensively concerning XS-Leaks and scans
thousands of resources on hundreds of websites. It is not feasible to perform this scanning
manually. This section explains the techniques and tools necessary to perform a fully
automated XS-Leak vulnerability assessment on many websites.

Cross-browser testing and automation: To test thousands of websites in a browser
in a reasonable time, one needs an automatable interface to control browsers. Such a
framework should at least be able to open specific pages, click on certain elements, and
modify cookies. For this purpose, different browser automation frameworks exist.

The general idea is that a driver program accepts commands sent from a client program
and uses these commands to control a real browser. Developers often want to test the
same website in several browsers to compare them. A framework where one can pluck
and exchange the controlled browser without changing the controlling code is a massive
benefit as the same code can be used to test several browsers. The Selenium project offers
a framework able to control different browsers by scripts [85]. The puppeteer project is
another framework to control browsers. However, it only fully supports Chrome as of
now [69].

Authenticated crawling: To study the state of the web, researchers need to find and
collect resources belonging to many websites. For this purpose, they use web crawlers.
Often, the crawler visits a landing page and clicks on all links based on some parameters.
Parameters are usually depth-first or breadth-first approach and stop-conditions such
as time or number of URLs. Such crawlers mainly find HTML documents. However,
all subresources, including scripts, images, or audio files, are potentially exploitable
SD-URLs. Putting a proxy between the crawler and the web, all responses, including
the ones belonging to the subresources, can be saved. In addition to intercepting the
messages, a proxy can also replay and modify requests, e.g., dropping or appending
cookies from requests.

To find SD-URLs, the researcher first needs to create state information on target websites
and access resources in different states. The considered state is usually logged-in state
and anonymous state. This post-login crawling is a challenging problem as it needs

16 Chapter 2 Background

credentials for every tested website and a way to perform the login. Several different
methods are available to perform this task. First, one can manually register and login
accounts and save and replay the login flows, but this approach does not scale to a large
number of websites [55, 92]. Second, one can use single sign-on (SSO) services to log in
on the target website using an account of a supported identity provider [104]. A third
option is to use manually created or crowd-sourced credentials and a tool to perform
the login automatically [47]. The last option is to use a tool that handles registration
as well as login fully automatically [28]. These automated options usually rely on a set
of heuristics to find login and signup forms, fill them out accordingly, and then check
whether the registration and login worked.

Chapter 3

XS-Leaks in browsers

The previous chapter described what an XS-Leak is and how an attacker could abuse a
leaky URL. This chapter investigates how XS-Leaks behave in different browsers in more
detail.

Most reports introducing new XS-Leak methods only provide two distinguishable re-
sponses, an ad-hoc summary of when the leak method works (e.g., the method can
distinguish different sized images), or a currently vulnerable SD-URL that can change
anytime. These reports prove that an XS-Leak exists. However, their unsystematic
approach leads to several issues described in the following.

First, researchers studying an XS-Leak method must find two distinguishable responses
based on the provided information. Depending on the quality and age of the report, this
can take some time. Even if the report provides two responses, this response pair might
not work anymore in an up-to-date version of a browser. The researcher cannot be sure
whether browsers fixed the leak method entirely, whether they used incorrect responses,
or have an error in their code trying to leak the difference.

Second, such an approach provides no information about how widespread and severe
the issue is. In particular, it does not answer the question “Are only these exact two
responses vulnerable or all possible responses that differ in property X?”. This question
is essential to estimate how many response pairs might be vulnerable on the web. It is
unlikely to find the exact response pair on an actual website but likely to find response
pairs that differ in property X.

Third, browser vendors do not get information on where the underlying cause of the issue
might be and how to fix it in their code. If, instead, a report includes that everything
except for the value of a property X is irrelevant for the leak to work, this hints that the
issue is in the code handling property X. Also, if all browsers behave the same, it hints

17

18 Chapter 3 XS-Leaks in browsers

that the leak follows the HTML specifications and that the browser vendors cannot easily
fix it. If, however, the browsers behave vastly different, or one browser is not vulnerable
at all, this suggests that this XS-Leak method primarily relies on unspecified edge case
behavior and might be easily fixed by the vendors.

In this chapter, we develop a more systematic approach to overcome the above three
issues and answer the question of “Which groups of responses can different leak methods
distinguish in different browsers?”. The answer to this question does not only help browser
vendors to fix underlying issues more efficiently and help researchers studying XS-Leaks,
but it also allows for the development of a static XS-Leak checker tool. This tool outputs
all leak methods that can distinguish two given responses without rerunning a test for
every method. Thus, this tool will be much faster than dynamically confirming every
single endpoint of a website for every known method to check if a website is exploitable.
It can also be used as an educational tool for developers, warning them about dangerous
practices.

The structure of this chapter is as follows. The first section defines the scope, i.e., which
methods and responses we tested in which browsers. Then, the second section explains
the framework built to answer the research question. Next, the third section evaluates
the created framework. Finally, the last section presents the results.

3.1 Scope

There exist at least 225 different browsers [14] and some have more than 90 major
releases [62]. Additionally, researchers found dozens of different XS-Leak attack instances
over the years [88]. Doing a comprehensive test of all existing XS-Leaks in all browsers
and versions is undoubtedly infeasible. Therefore, in this thesis, we aim to cover as much
as possible, focusing on aspects relevant to a large share of users and websites while
staying within feasible bounds.

3.1.1 Tested browsers

Even though over 225 browsers were created over time, only a small number of them
have a significant market share today. Issues found in these main browsers affect many
users, and focusing on them has a higher impact than focusing on a large set of mostly
unused browsers.

In July 2021, the four major desktop browsers (Chrome, Safari, Edge, and Firefox) had a
combined market share of over 93% [23], and most people used an up-to-date version [24].

Chapter 3 XS-Leaks in browsers 19

This fact can be explained by the silent auto-update behavior active in most browsers [30].
We cannot test Safari, only available for macOS, because we only have a Linux server
available to run all tests. We decided to test the other three major browsers in the most
recent version when starting this project to cover a large share of web users. We describe
the details of the exact versions and other settings in appendix B.

Web security studies often use headless browsers, i.e., browsers without graphical users
interfaces, as they are faster and need less memory. The pretests found that some
XS-Leak behavior (e.g., window.onblur) differed between headful and headless browsers,
which is in line with prior findings showing inconsistencies between headless and headful
modes of browsers [66]. As we aim to evaluate end-user security, we only consider headful
browsers.

3.1.2 Tested leak methods

Many different leak methods were discovered over time [42, 41, 55, 54, 43] starting
with the first mention of timing attacks on privacy in the year 2000 [31]. Both the
work of Sudhodanan et al. and the collaborative wiki of Sousa et al. attempt to give
a comprehensive overview of the known XS-Leaks methods by collecting all available
resources and information in one place [92, 88]. The methods listed there, including
the ones currently only in the GitHub repository1, provide a broad baseline of available
methods. We use a combined list of methods as the starting point of this research and
aim to find variants of these previously known methods. However, not all methods are
currently automatically testable. In the following, we provide an overview of the tested
methods and excluded methods.

Tested methods: The research in XS-Leaks is still fragmented, and no commonly
agreed-on taxonomy exists. The reference works of COSI and the XS-Leaks wiki both
primarily classify attack classes by what response property they can distinguish, e.g.,
CORP leaks or events-fired_content-type_mismatch_script [88, 92]. Unfortunately, this
response-centric approach has two shortcomings. First, the same property can often be
distinguished by several methods. Second, many methods can distinguish more than one
property. As a result, this approach can lead to a high number of leak classes and general
confusion. Instead, we focus on the browser side-channel responsible for the information
leakage, e.g., events fired on an HTML tag or errors observed using the global onerror
handler. As described in chapter 2.2, we group all browser side-channels into four groups:
events fired (EF), object properties (OP), global properties (GP), timing (T). Except for

1https://github.com/xsleaks/wiki/issues

https://github.com/xsleaks/wiki/issues

20 Chapter 3 XS-Leaks in browsers

timing, we test every leak method for all inclusion methods, even when it should not
work. For example, we check the element dimensions on a script tag. This approach
allows us to maintain a smaller codebase and not miss strange edge cases. In total, we
test 30 leak methods for 12 inclusion methods described in more detail in appendix A.

Excluded methods: The most representative evaluation would study all known methods.
However, not all methods are currently automatically testable or do not fit into our
testing approach. Therefore, we decided to only test methods that are reliably testable
in a fully automatic manner and do not involve too high engineering hurdles.

Timing and caching-related XS-Leaks are difficult to test at scale as they require timing
baselines. Additionally, much research already exist [38, 98, 82]. For these reasons, we
decided to excluded them from this work. We also exclude XS-Leaks based on CSS
requiring user interaction [57, 50] as they require a user-agent that can do more than
just opening a URL. Lastly, we exclude XS-Leaks relying on deprecated features such
as AppCache [54]. For a more detailed discussion on how we could add these groups of
XS-Leaks in the future, we refer to the discussion in chapter 5.

3.1.3 Tested responses

As described earlier, we want to compute the exact conditions under which an XS-Leak
method works in different browsers. To compute these conditions, we need to define a
search space of possible conditions and find a computational approach to calculate the
exact conditions. The following describes the constructed search space, i.e., all HTTP
responses we consider, and the general approach to compute the exact conditions of a
leak channel.

Response space: There are infinitely many possible Hypertext Transfer Protocol (Se-
cure) (HTTP(S)) responses as the body content can be arbitrary bytes, and most headers
are strings that can be combined in almost any way. Unfortunately, this makes testing
the entire space of responses impossible as it is infinitely large. Luckily, past research on
XS-Leaks, specifications, and initial experiments, indicated that XS-Leaks rely only on a
small set of properties, so not every obscure combination has to be tested as most of
them should not influence XS-Leak behavior. The relevant properties are the type of
content (e.g., image or non-image), status-code, and relevant headers. The search space
constructed is the complete combination of all the considered properties in table 3.1
leading to a total of 387,072 possible responses. We note that we might miss some
relevant properties or values with the construction of this limited search space, but we

Chapter 3 XS-Leaks in browsers 21

Property Count Options Notes

Status-Code 63 [100, 101, 102, 103, 200, 201, 202, 203, 204, 205, 206,
207, 208, 226, 300, 301, 302, 303, 304, 305, 307, 308,
400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410,
411, 412, 413, 414, 415, 416, 417, 418, 421, 422, 423,
424, 425, 426, 428, 429, 431, 451, 500, 501, 502, 503,
504, 505, 506, 507, 508, 510, 511, 999]

The 62 IANA defined
ones [46] and one invalid
code 999

Body 12 [ecocnt_html=num_frames=1,input_id=test1,
ecocnt_html=num_frames=2,
ecocnt_html=post_message=mes1,
ecocnt_html=meta_refresh=0;http://172.17.0.1:8000,
ecocnt_css=h1 {color: blue},
ecocnt_js=.„.,
ecocnt_js=var a=5;,
ecocnt_img=width=50,height=50,type=png,
ecocnt_vid=width=100,height=100,duration=2,
ecocnt_audio=duration=1,
ecocnt_pdf=a=a,
empty]

Special syntax to re-
quest content from the
echo application

Content-Type 8 [text/html, text/css, application/javascript,
video/mp4, audio/wav, image/png, application/pdf,
empty]

Content-Disposition 2 [attachment, empty]
Location 2 [http://172.17.0.1:8000, empty]
X-Frame-Options 2 [deny, empty]
X-Content-Type-Options 2 [nosniff, empty]
Cross-Origin-Resource-Policy 2 [same-origin, empty]
Cross-Origin-Opener-Policy 2 [same-origin, empty]

Table 3.1: Considered properties and options of the response space.

think we have made a good compromise in covering most of the relevant response space
while staying feasible. More discussion on the adequacy of the constructed search space
follows in chapter 5.2.1.

Table 3.1 lists the number of options for every considered property. For every property,
we use at least one positive and one negative value. A positive value could be that the
body is a valid image or COOP prevents cross-site pages from having a reference of an
opened site. A negative value could be that the body is not a valid image or that COOP
does not prevent access to the reference. For all headers and body, we use the special
value empty, i.e., header not set, or body contains 0 bytes, as the default option. Many
of these headers have more than two specified values. Often one value only allows access
from the same origin, whereas another value relaxes this to the same site or a specified
site. However, in the threat model we consider, the attacker can only host the attack
page cross-site. So, from an attacker’s perspective, all these values are negative, and it
suffices only to test one of these possible values as they should all behave the same on a
malicious site.

Exact conditions of XS-Leak methods: There are two general approaches to compute
the exact conditions under which an XS-Leak method works within the constructed
search space. The first approach starts with two responses that lead to different outcomes,
then modifies one of the responses and observes the outcome. For example, one can

22 Chapter 3 XS-Leaks in browsers

5. Observation for <inc>, <id>

Browser automation:

Test all <ids> for all <incs> in all browsers

Attack-page generator:

Create page for <inc> that includes <id>

1. /apg/<inc>/?url=<echo_app>/<id>

3. /id

4.

Echo application:

Return response for <id>

Database:

Save all observations

6. Get all observations

Leak channel generalizer:

Provide insights into results

2.

Figure 3.1: Overview of the test browser framework.

add a property, remove a property, or change its value. The idea behind this approach
is that if one modifies property A and still observes the same outcome, one can ignore
this property. The problem with this approach is that there is no general algorithm one
could apply and that there are problems with disjoint groups of responses leading to the
same outcome. The second approach is to test the complete space of responses, group
responses that generated the same outcome together, and see what the responses in a
group have in common. Depending on the algorithm used, this approach can find several
disjoint groups leading to the same outcome and test several methods simultaneously.
For these reasons, we chose the second approach and tested all leak methods for all
responses in the constructed response space.

3.2 Test browser framework

The previous section described the constructed response space and that it is necessary
to test every response for every inclusion method for every tested browser. Therefore,
a suitable framework is needed to perform millions of tests efficiently. Additionally, a
methodology to interpret the results is needed. We created the test browser framework
that can automatically test all XS-Leak methods in several browsers over the entire
created response space. The framework also generalizes the results using machine learning
techniques.

Figure 3.1 gives an overview of the architecture of the framework. The main parts are the
echo application representing the response space, the attack-page generator responsible

Chapter 3 XS-Leaks in browsers 23

for creating the attack pages, and the browser automation setup, which visits all attack
pages in several browsers. Finally, the leak channel generalizer summarizes all groups of
responses that generate the same observations together in a meaningful way.

The general sequence of a test is that an automated browser first requests an attack
page for an inclusion method and response id from the attack-page generator. The
attack page contains code to observe the outcomes of all leak methods and includes
one cross-site resource from the echo application using the specified inclusion method.
Then, the automated browser loads the attack page, leading the browser to perform a
request to the echo application. The echo application will generate a response based on
the received id and return it. The code on the attack page logs all observations, such
as which events fired, and sends the results to a database server. Then, the automated
browser will request the next attack pages. After all tests are executed, the leak channel
generalizer groups all responses that generate the same outcome together and provides a
helpful summary.

3.2.1 Echo application

The echo application is responsible for delivering the 387,072 responses of the response
space. We constructed it out of two parts. The echo part can return various content
bodies and headers by reflecting query parameters to the sender. The leaky part maps
all responses of the constructed response space to an id and, when that id is requested,
returns the corresponding response by requesting it from the echo part.

Using this application, we can request resources from the application at /leaks/<id>/,
observe and save the results and later quickly look up what the exact content of a
response was. The application uses the Django framework [26] and we deployed it using
uWSGI [97] to allow for many parallel connections and support HTTPS. Testing on
HTTPS is necessary, because some investigated features such as the Cross-Origin-Opener-
Policy require a secure origin [21].

3.2.2 Attack-page generator

The attack-page generator is responsible for delivering the attack pages that perform
an XS-Leak attack. It has one endpoint that is called with one inclusion method and
one URL. The attack-page generator creates an HTML page where the given URL is
embedded according to the requested inclusion method. Additional parameters such as
timeouts or the database back-end URL can be specified. Otherwise, it will use built-in
default values.

/leaks/<id>/

24 Chapter 3 XS-Leaks in browsers

With this implementation and the choice of testing the entire response space, it is
possible to test all XS-Leak methods belonging to one inclusion method simultaneously.
In total, 13,934,556=12(inclusion method)*387,072(responses)*3(browsers) attack pages
are necessary for the complete comprehensive evaluation of the constructed response
space. The application uses Django and the Django template language to create the
attack pages with a small and maintainable code-base. For the tests, we deploy the
application with uWSGI to handle many parallel connections.

3.2.3 Browser automation

An automation methodology is necessary to test all responses with all inclusion methods
in all browsers. The automated browser requests every test URL of the attack-page
generator consisting of an inclusion method and response id. An example of such a
URL is https://<apg_base>/apg/<inc>/?url=<leaky_base>/leaks/<id>/. After
the attack page successfully gathered and saved the observations, we test the following id.
If a test takes too long, we record it as a timeout. Timeouts can occur if the browser or
some other part of the framework crash. For some tests, additional steps are necessary
before the dynamic automator continues with the following URL. For example, in the
case of the download bar detection technique [88], the download bar has to be closed
before continuing to the next test.

We use Selenium 4 in the dynamic grid configuration [86] to manage the browsers.
In this configuration, every browser is started in its individual docker container [27].
The dynamic grid provides complete isolation between browsers and runs. However, it
requires considerable overhead to create and start the docker containers. A python script
coordinates the automated tests and starts around 50 browsers to run tests in parallel.
We include more details about the used parameters and versions in appendix B.

3.2.4 Leak channel generalizer

The test browser framework generates large amounts of data while performing its
13,934,556 tests. For every leak channel tested, we want to find the common characteristics
of responses that result in the same observation. If we have a short description of when
a response generates a result, we can expect this to generalize to unseen responses.
For example, suppose the description says that as long as the response contains the
Cross-Origin-Resource-Policy header, an image inclusion will fire the error event. In that
case, this will likely apply to responses outside the constructed response space, such as
responses with an unconsidered content-type.

https://<apg_base>/apg/<inc>/?url=<leaky_base>/leaks/<id>/

Chapter 3 XS-Leaks in browsers 25

It is easy to get all responses that result in the same outcome for one channel. As we
test the entire test space, this is just a database lookup. However, the result that 200
thousand responses result in a load event and the other 200 thousand responses result
in an error event does not provide much insight. Therefore, we need an algorithm that
summarizes each channel with short representations of each outcome’s common features
to generate more meaningful insights.

This work uses decision trees in the implementation of h2o random forests as the
algorithm to create meaningful representations of the results [25]. Decision trees are good
at removing variables that do not provide any information, e.g., irrelevant headers in this
case, and can handle several independent paths leading to the same result. If the created
decision trees are not too large, they are simple to interpret and come in a representation
one can use to predict the outcome of unseen responses. On the other hand, if the created
decision trees are large, this suggests that the leak channel is unstable as the trees could
not find short characteristics of responses that result in the same outcome.

3.3 Test browser framework evaluation

We used the test browser framework to perform 13,934,556 tests to cover the entire
response space constructed. The gathered data shows that several of these tests failed and
that different inclusion methods take varying average times in several browser families.
Additionally, we can only consider a channel reliable if it always results in the same
observation for the same response. Therefore, to check that a leak channel works reliably,
we rerun 70,000 tests to evaluate reliability. In the following, we evaluate the time taken
by the inclusion methods, the occurred timeouts, and the reliability of the XS-Leak
methods.

3.3.1 Timing, timeouts and impossible results

Additionally to the leak methods observations, we also log general timing information.
One finding is that chromium-based browsers fire the load event on a page before finishing
the parsing and error handling of all subresources. Whereas, Firefox only calls the load
event after it finishes parsing and error handling. This knowledge is critical for security
researchers as they cannot rely only on the load event for specific tests in chromium-based
browsers but need to wait longer. To account for this, we added a timeout period after
the load event is received into the test infrastructure and restarted the testing framework.
Table 3.2 displays the results of the timing information after adding a delay of at least
150ms before submitting the results. We excluded MicrosoftEdge from the table as the

26 Chapter 3 XS-Leaks in browsers

Loading time Completion time
mean std min max mean std min max

Inclusion method Browser

audio Chrome 39.46 15.07 9 959 193.91 15.44 163 1112
Firefox 59.65 19.04 11 1065 220.12 20.21 170 1248

embed Chrome 88.98 60.94 11 1052 244.17 60.93 167 1208
Firefox 51.36 22.72 9 964 212.13 23.18 165 1121

embed-img Chrome 22.07 19.01 7 960 176.77 19.25 160 1115
Firefox 51.24 21.52 7 1294 211.34 22.01 163 1452

iframe Chrome 90.84 45.07 14 958 474.94 46.51 397 1372
Firefox 130.35 88.11 13 1199 518.61 87.10 399 1619

iframe-csp Chrome 87.36 33.45 14 996 471.01 36.65 395 2381
Firefox 125.25 88.01 10 1333 514.43 88.80 395 2557

img Chrome 15.99 12.87 4 953 170.41 13.25 157 1109
Firefox 51.41 17.47 9 1009 211.46 18.11 168 1177

link-prefetch Chrome 4.05 2.05 1 127 158.43 2.95 153 284
Firefox 7.05 3.90 1 168 167.55 5.94 157 344

link-stylesheet Chrome 15.40 18.11 3 950 169.84 18.40 156 1104
Firefox 49.33 16.60 8 1076 209.41 17.22 164 1236

object Chrome 39.86 33.12 12 981 195.87 33.12 167 1188
Firefox 52.83 22.70 9 1157 212.91 23.11 166 1323

script Chrome 18.07 39.06 3 964 172.65 39.29 156 1117
Firefox 52.07 18.17 11 1175 212.52 18.93 168 1337

video Chrome 41.04 19.84 16 971 195.46 20.09 169 1124
Firefox 64.51 21.36 22 1602 225.23 22.53 180 1799

window.open Chrome 14.82 5.64 6 207 1631.25 458.46 386 2314
Firefox 54.68 11.31 23 382 1266.36 235.73 412 2650

Table 3.2: Loading and completion times for all inclusion methods in milliseconds.

results are similar to Chrome. The table contains the time it takes the browser to call the
load event on the attack page, and the time it took the attack page to finish executing.
In addition, we found that chromium-based browsers are slower in completely handling
window.open. Window.open takes the longest time of all inclusion methods, and it is hard
to decide how long one should wait, as it is impossible to know when the opened window
finished loading, as one does not have access to the load event of opened windows.

Initially, 42,602 out of the 13,934,556 tests, i.e., roughly 0.003%, timed out roughly
evenly split over all three browsers. The attack page waits for the load event [65], then
executes code to gather information about the included cross-site resource and then sends
a request with the observed data to a database server. If the request to the database
does not finish in a configured time, we save the test as a timeout. Timeouts can happen
for many reasons, primarily related to the testing infrastructure. Therefore, we retest
all tests that timed out. After two rounds of retesting the timed out ones, only 4,496
URLs in Firefox remain without results. An investigation discovered that this is due
to two bugs in Firefox preventing these pages from ever successfully loading. The first
bug is that IFrames get stuck loading if the status-code is 101 or 304, the content-type

Chapter 3 XS-Leaks in browsers 27

is application/pdf, and the body is not empty. The second bug is that many inclusion
methods reload a URL infinitely under specific conditions. One example is status-code
203, content-type video/mp4, and empty body for top-level navigation. For more details,
we refer to the two created bug reports [77, 78].

3.3.2 Reliability evaluation

One can only successfully exploit a leak channel if the leak channel always results in the
same observations for the same responses. Unfortunately, not every channel is reliable.
For example, other uncontrolled factors not depending on the returned responses can
influence the tests resulting in random observations. For example, the load event could
not be fired in time because the response got delayed due to a global hiccup and not
because the browser would not fire a load event for the response. We retest a random
sample of URLs to measure the reliability of the leak channels in the testing infrastructure.
A channel is regarded as reliable only if we observe the same results in the original runs
and the reruns for most tests. For this, we rerun 70,000 tests, i.e., roughly 1,950 retests
per browser and inclusion method combination. Many channels are perfectly reliable
and always result in the same observation. Other channels are mostly stable with some
rare incorrect results. At the same time, some channels are volatile and give different
results in many runs. The instability has several reasons explained in the following.

Some instability is due to problems in the testing infrastructure. For example, the global-
properties_downloadbarheight method requires the precondition that the download bar
is closed before the test starts. In Selenium, there is no method to close the download
bar directly. By design, one can only interact with the web page and not with the
browser’s user interface [96]. To close the download bar using the available features,
we visit chrome://downloads and then execute JavaScript on the page to click on
every X button to remove the download bar. Unfortunately, this method does not work
every time. In addition, the WebDriver automated browsers display a notice that the
browser is automated [100]. Chrome and Edge do this by displaying a banner at the top.
Unfortunately, this banner sometimes does not appear or disappears randomly, leading to
incorrect observations. A solution for the first problem would be to open a new browser
for every single test. However, as every browser is isolated in its docker container by
the dynamic grid, this would lead to unacceptably high overhead costs. Additionally, it
would not change anything for the second problem.

Other instabilities seem to be connected to insufficient waiting time, e.g., if a postMessage
is delayed, the test might miss the message if it does not wait long enough. We mainly

chrome://downloads

28 Chapter 3 XS-Leaks in browsers

observed this phenomenon for window.open, but occasionally also for IFrame and link-
prefetch. One solution would be to use longer waiting times. However, it is unclear what
a suitable waiting time is. The higher the timeout, the longer the tests take, and the
more difficult it would be to exploit in the real world as a victim might already have
closed the malicious website. In the initial results, all leaks based on the window.open
inclusion method were unstable. We then realized that the initial timeout period of two
seconds for a test is not always enough for the window.open inclusion method and redid
all window.open test with a new timeout period of four seconds. After this adjustment,
most XS-Leak methods using window.open were stable.

For other methods, we could not find any explanation. These methods appear to behave
randomly, e.g., the window.onblur method in Firefox appears to fire randomly unrelated
to any of the controlled factors.

We argue that the unstable methods are hard to exploit for an attacker in the real world.
For example, a user might already have the download bar open, or several tries would be
needed to make sure the result is correct. Hence, we remove the unstable methods from
the following tests.

3.4 Leak channel results

Finally, we present the results for the main question: “Which groups of responses can
different leak methods distinguish in different browsers?”. We calculated how many
different outcomes a channel has and how many responses resulted in every outcome for
all leak channels. Table 3.3 shows the binarized results of the outcomes. The columns
represent all tested inclusion methods, the rows represent all tested leak methods, and
the cells represent all leak channels for both browsers. Every cell with a ● represents a
leak channel that has more than one observation, and every cell with a ◯ represents
a leak channel that only has a single observation. Except for some cases, such as
the third method global-properties_downloadbarheight, which only has more than one
observation in Chrome, most channels have the same number of possible observations in
both browsers. We ignored all channels that only have one outcome as they do not provide
any information. For example, the last column shows that many leak methods such as
event-list cannot work for window.open. The other channels can work or behave randomly,
as seen in the previous section. Therefore, we created decision trees to summarize all
reliable channels and manually analyzed them to find interesting patterns. Using this
strategy, we found several discrepancies in browsers and bugs described in the following.
We also present the created trees and how one can use them as a static pruning tool.

Chapter 3 XS-Leaks in browsers 29

Inclusion
method au

di
o

em
be

d

em
be

d-
im

g

ifr
am

e

ifr
am

e-
cs
p

im
g

lin
k-
pr
ef
et
ch

lin
k-
st
yl
es
he
et

ob
je
ct

sc
rip

t

vi
de
o

w
in
do

w
.o
pe

n

Leak method Browser

event-list Firefox ● ● ● ● ● ● ● ● ● ● ● ◯
Chrome ● ● ● ● ● ● ● ● ● ● ● ◯

event-set Firefox ● ● ● ● ● ● ● ● ● ● ● ◯
Chrome ● ● ● ◯ ◯ ● ● ● ● ● ● ◯

gp-download-bar-height-bin Firefox ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯
Chrome ◯ ● ● ● ● ◯ ◯ ◯ ● ◯ ● ●

gp-securitypolicyviolation Firefox ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯ ◯ ◯ ◯
Chrome ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯ ◯ ◯ ◯

gp-window-getComputedStyle Firefox ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯
Chrome ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯

gp-window-hasOwnProperty Firefox ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯ ◯
Chrome ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯ ◯

gp-window-onblur Firefox ● ● ● ● ● ● ● ● ● ● ● ●
Chrome ● ● ◯ ● ◯ ◯ ◯ ◯ ◯ ● ◯ ●

gp-window-onerror Firefox ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯ ◯
Chrome ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯ ◯

gp-window-postMessage Firefox ◯ ● ● ● ● ◯ ◯ ◯ ● ◯ ◯ ●
Chrome ◯ ● ◯ ● ● ◯ ◯ ◯ ● ◯ ◯ ●

op-el-buffered Firefox ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯
Chrome ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯

op-el-contentDocument Firefox ◯ ◯ ◯ ● ● ◯ ◯ ◯ ◯ ◯ ◯ ◯
Chrome ◯ ◯ ◯ ● ● ◯ ◯ ◯ ● ◯ ◯ ◯

op-el-duration Firefox ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯
Chrome ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯

op-el-height Firefox ◯ ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯ ◯ ◯
Chrome ◯ ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯ ◯ ◯

op-el-media-error Firefox ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯
Chrome ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯

op-el-naturalHeight Firefox ◯ ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯ ◯ ◯
Chrome ◯ ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯ ◯ ◯

op-el-naturalWidth Firefox ◯ ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯ ◯ ◯
Chrome ◯ ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯ ◯ ◯

op-el-networkState Firefox ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯
Chrome ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯

op-el-paused Firefox ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯
Chrome ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

op-el-readyState Firefox ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯
Chrome ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯

op-el-seekable Firefox ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯
Chrome ● ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯

op-el-sheet Firefox ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯
Chrome ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

op-el-videoHeight Firefox ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯
Chrome ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯

op-el-videoWidth Firefox ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯
Chrome ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ● ◯

op-el-width Firefox ◯ ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯ ◯ ◯
Chrome ◯ ◯ ◯ ◯ ◯ ● ◯ ◯ ◯ ◯ ◯ ◯

op-frame-count Firefox ◯ ◯ ◯ ● ● ◯ ◯ ◯ ◯ ◯ ◯ ●
Chrome ◯ ◯ ◯ ● ● ◯ ◯ ◯ ◯ ◯ ◯ ●

op-win-CSS2Properties Firefox ◯ ◯ ◯ ● ● ◯ ◯ ◯ ◯ ◯ ◯ ●
Chrome ◯ ◯ ◯ ● ● ◯ ◯ ◯ ◯ ◯ ◯ ●

op-win-history-length Firefox ◯ ◯ ◯ ● ● ◯ ◯ ◯ ◯ ◯ ◯ ●
Chrome ◯ ◯ ◯ ● ● ◯ ◯ ◯ ◯ ◯ ◯ ●

op-win-opener Firefox ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ●
Chrome ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ●

op-win-origin Firefox ◯ ◯ ◯ ● ● ◯ ◯ ◯ ◯ ◯ ◯ ●
Chrome ◯ ◯ ◯ ● ● ◯ ◯ ◯ ◯ ◯ ◯ ●

op-win-window Firefox ◯ ◯ ◯ ● ● ◯ ◯ ◯ ◯ ◯ ◯ ●
Chrome ◯ ◯ ◯ ● ● ◯ ◯ ◯ ◯ ◯ ◯ ●

Table 3.3: Matrix of all tested leak methods and inclusion methods.

MicrosoftEdge behaves almost identical to Chrome and is omitted for brevity.
◯: Only one observation exists. ●: At least two observations exist.

30 Chapter 3 XS-Leaks in browsers

3.4.1 Browser inconsistencies

The first result is that Chrome and MicrosoftEdge behave identically except for the
unstable global-properties_downloadbarheight method that is unreliable in Chrome
and never works in other browsers. This observation suggests that almost all code
responsible for XS-Leaks belongs to Chromium and not the code changed by Chrome and
MicrosoftEdge. Consequently, we removed MicrosoftEdge from further tests. Another
observation is that Chrome and Firefox behave quite differently, but it is not always clear
which browser behaves correctly. For example, object and embed behave almost identical
to IFrame in Chrome, which is not the case for Firefox. However, this is known, and
Firefox might adjust its behavior in the future [99]. Another example, where it is even
less clear what the correct behavior is, is that Firefox performs redirections for responses
with status-code 300, whereas Chrome does not. Websites could use this behavior to
detect which browser a user is using, even if JavaScript is disabled.

3.4.2 Working leak channels and trees

Most leak channels work more or less as expected. However, there are significant
variations between the browsers. For example, which status-codes are allowed or which
content-types are allowed differs for many methods. In the following, we present two
instances of the created decision tree and show which differences between the browsers
exist in the handling of edge-case behavior.

Figure 3.2 presents the decision trees created for events-fired_set_img. This leak channel
observes the events fired on image tags. The image tag either fires a load event when
an image was loaded successfully or an error event otherwise. The leaf nodes in the
tree with 1.0 belong to responses that fire an error event, and the leaf nodes with 0.0
belong to responses that fire a load event. The tree for Chrome is located on the left
and the tree for Firefox on the right. In general, both browsers fire load for a successful
image load and error otherwise. However, the definitions of a successful load are slightly
different. Most importantly, the body needs to contain a valid image for a successful load.
However, even when the body contains a valid image, browsers do not fire a load event
under several circumstances. Both browsers do not load the image if CORP is set or the
status-code prevents loading. Both browsers do not load for status-codes 100, 101, 102,
103, 204, 205 and 304. Chrome additionally fails for status-code 407. They also do not
load the image if the status-code is a redirection code and a valid location header redirects
to a non-image location. Firefox accepts one additional code for redirections: 300. In
Chrome, the load also fails if the content-type header is application/pdf or if the XCTO
header is set and the content-type header is text/html. The CORB implementation of

Chapter 3 XS-Leaks in browsers 31

Result: ['error']
body

Cross-Origin-Resource-Policy

ecocnt_img=width=50,height=50,type=png

1.0

11 values

Content-Type

empty

1.0

same-origin

Status-Code

application/javascript
audio/wav

empty
image/png

text/css
video/mp4

X-Content-Type-Options

application/pdf
text/html

0.0

50 values

Status-Code

13 values

Content-Type

empty

1.0

nosniff

Location

301
302
303
307
308

1.0

100
101
102
103
204
205
304
407

Status-Code

text/html

1.0

application/pdf

0.0

empty

1.0

http://172.17.0.1:8000

0.0

50 values

Status-Code

13 values

Location

301
302
303
307
308

1.0

100
101
102
103
204
205
304
407

0.0

empty

1.0

http://172.17.0.1:8000

(a) Chrome

Result: ['error']
body

Cross-Origin-Resource-Policy

ecocnt_img=width=50,height=50,type=png

1.0

11 values

Status-Code

empty

1.0

same-origin

0.0

50 values

Status-Code

13 values

Location

300
301
302
303
307
308

1.0

100
101
102
103
204
205
304

0.0

empty

1.0

http://172.17.0.1:8000

(b) Firefox

Figure 3.2: Decision trees for the leak channel events-fired_set_img.

Chrome explains this behavior as Chrome replaces images by an empty body in these
cases [5].

Figure 3.3 presents the trees created for global-properties_hasOwnProperty_script
(Cross-Site Script Inclusion (XSSI)). This time, the 1.0 leaf nodes represent cases where
no variable is set, and the 0.0 leaf nodes represent cases where the tested variable is
set. To detect that the variable is set, the body content needs to contain the variable.
However, even if the body is valid JavaScript containing the variable, the script parsing
can fail for many other reasons resulting in a not-set variable. First, not every status-
code is allowed. Firefox, only accepts codes 200, 201, 202, 203, 206, 207, 208, and 226.
Chrome additionally accepts the redirection codes 300, 301, 202, 303, 305, 307, and 308.
For all of the redirection codes except 300 and 305, no location header is allowed as
otherwise a redirect would occur. In both browsers, CORP stops the parsing of the
resource. The allowed content-types are application/javascript, text/css and text/html

32 Chapter 3 XS-Leaks in browsers

Result: {'a': 'Var a does not exist'}

body

Status-Code

ecocnt_js=var a=5;

1.0

11 values

Content-Type

15 values

1.0

48 values

Cross-Origin-Resource-Policy

application/javascript
empty

text/css
text/html

1.0

application/pdf
audio/wav
image/png
video/mp4

X-Content-Type-Options

empty

1.0

same-origin

Status-Code

empty

Content-Type

nosniff

0.0

200
201
202
203
206
207
208
226
300
305

Location

301
302
303
307
308

Status-Code

application/javascript

1.0

empty
text/css

text/html

0.0

empty

1.0

http://172.17.0.1:8000

0.0

200
201
202
203
206
207
208
226
300
305

Location

301
302
303
307
308

0.0

empty

1.0

http://172.17.0.1:8000

(a) Chrome

Result: {'a': 'Var a does not exist'}

body

Status-Code

ecocnt_js=var a=5;

1.0

11 values

Cross-Origin-Resource-Policy

200
201
202
203
206
207
208
226

1.0

55 values

Content-Type

empty

1.0

same-origin

X-Content-Type-Options

application/javascript
application/pdf

empty
text/css

text/html

1.0

audio/wav
image/png
video/mp4

0.0

empty

Content-Type

nosniff

0.0

application/javascript

1.0

application/pdf
empty

text/css
text/html

(b) Firefox

Figure 3.3: Decision trees for the leak channel
global-properties_hasOwnProperty_script.

in Chrome. Firefox additionally allows application/pdf. These content-types are allowed
if the X-Content-Type-Options header is not set. If the header is set, both browsers only
allow application/javascript as the content-type.

The patterns observed in the two examples above regarding allowed status-codes or
content-types apply to all leak channels. These results highlight that Chrome and Firefox
have major differences in how they handle the parsing of responses. These differences
can potentially lead to many XS-Leaks only existing in one browser. All created trees
are available in the associated online material referenced in appendix B.

Chapter 3 XS-Leaks in browsers 33

​ Response1 Response2

Status-Code 200 200

Body-Content empty empty

Content-Type empty empty

X-Content-Type-Options empty empty

X-Frame-Options empty empty

Content-Disposition empty empty

Location empty empty

Cross-Origin-Opener-Policy same-origin empty

Cross-Origin-Resource-Policy empty empty

Distinguish!

Results:
Browser Leak channel Value 1 Value 2

Firefox 88.0 op_win_opener::window.open evaluates to false evaluates to true

Firefox 88.0 op_win_CSS2Properties::window.open Access possible Access denied

Firefox 88.0 op_win_window::window.open win.window.name='' Access to win.window.name denied

Firefox 88.0 op_win_origin::window.open Access possible Access denied

Firefox 88.0 op_win_history_length::window.open 0 1

Chrome 90.0 op_frame_count::window.open Not possible 0

Chrome 90.0 op_win_opener::window.open evaluates to false evaluates to true

Chrome 90.0 op_win_CSS2Properties::window.open Access possible Access denied

Chrome 90.0 op_win_window::window.open js-null Access to win.window.name denied

Chrome 90.0 op_win_origin::window.open Access possible Access denied

Chrome 90.0 op_win_history_length::window.open win.history is undefined 1

Figure 3.4: Screenshot of the test responses application.

3.4.3 Test responses application

One can use the created decision trees to predict for every possible response what the
observed outcome will be. However, to predict the outcome of a response using the trees,
one first needs to map it to the response space. For example, check the response’s body
type, and if it is a valid image, map it to ecocnt_img=width=50. Then, check if the
CORP header has a prohibiting value and map it to CORP=same-origin in that case.
After mapping the response, one can follow the corresponding path in the trees and
predict the outcomes as the value of the reached leaf nodes in every tree. We note that
the prediction for the same browser and version is correct as long as the mapping is
correct, no unconsidered property changes the observation, and the server does not use
defenses such as Fetch metadata.

Analyzing all the created trees or the raw data is time-consuming and difficult to process
for humans. Thus, we release an application to check if two responses are distinguishable
to make the results more accessible. Figure 3.4 displays a screenshot of this application.
First, users can configure two responses using drop-down menus. Then, the application
will show all leak channels that can distinguish the two responses and the individual
outcomes of the responses. Browser vendors can use this tool to check which leak channels

34 Chapter 3 XS-Leaks in browsers

still leak information in their browsers. Additionally, web developers can use this tool to
check if they have potentially leaky endpoints. The example shows two responses that
only differ in the COOP header. This difference can be detected with several different
leak methods when including the URL with window.open. In this example, we also see
that in Chrome, one additional vector exists. This vector exits because the framecount
of responses with COOP is not accessible in Chrome, whereas it is 0 in Firefox.

3.4.4 Security relevant bugs

A manual analysis of the created decision trees revealed odd paths where the observed
result was unexpected. After finding such paths in a tree, we manually confirmed that
the unexpected result was happening, checked if it broke any specifications and could
cause trouble to users, and then reported it to the browser vendors. In the following, we
summarize the security-relevant bugs discovered while analyzing the data of this chapter.

X-Frame-Options bug: In certain cases, Firefox ignores the X-Frame-Options header
and displays the response, despite that it should block the response due to the presence
of the XFO header. A response with XFO set to deny will not get blocked if the
status-code is 300, 301, 302, 303, 307, or 308. In addition, the location header is
not allowed to be set, as otherwise, the browser would perform a redirection first. If
such a response is included using the IFrame tag, users can see the content, which
attackers could use for clickjacking attacks. In terms of XS-Leaks, it can be abused
for the leak channels global-properties_securitypolicyviolation_iframe-csp and global-
properties_postMessage_iframe. For them to work, the body needs to contain code to
perform a redirection or broadcast a postMessage. The content-type needs to be either
text/html or empty. This finding is related to the known behavior that browsers do not
enforce XFO if the response is a server-side redirection [52]. For more details, see the
created bug report [74].

Cross-Origin-Resource-Policy inconsistencies: A second finding is that Firefox en-
forces CORP on the embed and object tags, whereas Chrome does not enforce CORP on
embed and object. However, CORP should only be enforced on no-cors requests and not
on navigate requests [33]. IFrame, object and embed all issue sec-fetch-mode: “navigate”
requests in both Chrome and Firefox. Therefore, Firefox should not apply CORP on
these, but it does on the object and embed tags. For more details, see the created bug
report [76].

Chapter 3 XS-Leaks in browsers 35

mediaError bugs: We discovered additional bugs in handling the MediaError object
of audio and video resources for both browsers. Abusing the MediaError object to leak
information cross-site was first discovered in 2018 [3]. According to the original bug
reports, this leak should be fixed in Chrome, and Firefox [2, 1]. However, the fixes
implemented are both incomplete. We found several bypasses that still work in current
versions highlighting the need to take a more comprehensive approach to XS-Leaks
instead of only testing with a single response pair if a leak works or not, as this can lead
to insufficient bug fixes.

In Firefox, the implemented fix is only applied to cross-site pages and not to same-site
pages. This loophole makes it possible to leak all information that was possible before
on subdomains or different ports. For more details, see the created bug report [73].

Figure 3.5 illustrates the incorrect behavior in Chrome. For each of the four possible
outcomes, a binary sub-tree exists. The tree class of every sub-tree indicates the positive
outcome of the tree. All paths that lead to a leaf node with 1.0 result in this outcome.
All other paths result in another outcome. The first sub-tree shows when the result will
be null, i.e., no error occurred. The result is only null for status-code 200, no CORP,
and a valid video (or audio) in the body. Also, the content-type header has not to trigger
CORB protection. The second sub-tree shows the responses resulting in the empty error
message that should apply to all invalid responses according to their fix. The third
sub-tree shows how one can detect CORP or status-codes 100, 101, 102, 103, and 407,
resulting in an error message with content MEDIA_ELEMENT_ERROR: Format error.
The last sub-tree shows another error message: PIPELINE_INITIALIZATION_FAILED
that was reached for the valid but empty audio response in case status-codes, CORP or
CORB did not block the resource. For more details, see the created bug report [71].

CSP path matching bug: While building the framework, we discovered an additional
bug. The CSP matching algorithm should ignore the path component after a redi-
rection [16]. Chrome follows the algorithm when a redirection status-code causes a
redirection. However, Chrome does not follow it when a meta-refresh tag or JavaScript
causes the redirection. One can use this behavior to find out that a same-origin redirection
happened cross-origin. More details can be found in the created bug report [70].

Fetch metadata inconsistency: During the manual confirmation of the results, we
discovered another bug. In a newer version, Firefox introduced Fetch metadata. However,
it is sending sec-fetch-site “cross-site” instead of sec-fetch-site “same-site” if only the
ports differ on localhost or IPs, which is against the standard [32]. For more details, we
refer to the created bug report [75].

36 Chapter 3 XS-Leaks in browsers

R
e
su

lt:
 js-n

u
ll

R
e
su

lt:
 ''

R
e
su

lt:
 'M

E
D

IA
_E

L
E

M
E

N
T

_E
R

R
O

R
: F

o
rm

a
t e

rro
r'

R
e
su

lt:
 'P

IP
E

L
IN

E
_E

R
R

O
R

_IN
IT

IA
L

IZ
A

T
IO

N
_F

A
IL

E
D

'
S

ta
tu

s-C
o
d

e

0
.0

6
2

 va
lu

e
sb
o
d

y 2
0

0

0
.0

1
1

 va
lu

e
s

C
ro

ss-O
rig

in
-R

e
so

u
rce

-P
o
licy

e
co

cn
t_vid

=
w

id
th

=
1

0
0

,h
e
ig

h
t=

1
0

0
,d

u
ra

tio
n

=
2

0
.0 sa

m
e
-o

rig
in

C
o
n

te
n

t-T
yp

e

e
m

p
ty

X
-C

o
n

te
n

t-T
yp

e
-O

p
tio

n
s

a
p

p
lica

tio
n

/p
d

f
te

xt/h
tm

l

1
.0 a

p
p

lica
tio

n
/ja

va
scrip

t
a
u

d
io

/w
a
v

e
m

p
ty

im
a
g

e
/p

n
g

te
xt/css

vid
e
o
/m

p
4

0
.0

n
o
sn

iff

C
o
n

te
n

t-T
yp

e

e
m

p
ty

0
.0 a

p
p

lica
tio

n
/p

d
f1

.0 te
xt/h

tm
l

C
ro

ss-O
rig

in
-R

e
so

u
rce

-P
o
licy

0
.0 sa

m
e
-o

rig
in

S
ta

tu
s-C

o
d

e

e
m

p
ty

0
.0

1
0

0
1

0
1

1
0

2
1

0
3

4
0

7S
ta

tu
s-C

o
d

e

5
8

 va
lu

e
s

b
o
d

y 2
0

0

1
.0

5
7

 va
lu

e
s

C
o
n

te
n

t-T
yp

e e
co

cn
t_a

u
d

io
=

d
u

ra
tio

n
=

1
e
co

cn
t_vid

=
w

id
th

=
1

0
0

,h
e
ig

h
t=

1
0

0
,d

u
ra

tio
n

=
21

.0

e
co

cn
t_css=

h
1

 {
co

lo
r: b

lu
e
}

e
co

cn
t_h

tm
l=

m
e
ta

_re
fre

sh
=

0
;h

ttp
://1

7
2

.1
7

.0
.1

:8
0

0
0

e
co

cn
t_h

tm
l=

n
u

m
_fra

m
e
s=

1
,in

p
u

t_id
=

te
st1

e
co

cn
t_h

tm
l=

n
u

m
_fra

m
e
s=

2
e
co

cn
t_h

tm
l=

p
o
st_m

e
ssa

g
e
=

m
e
s1

e
co

cn
t_im

g
=

w
id

th
=

5
0

,h
e
ig

h
t=

5
0

,typ
e
=

p
n

g
e
co

cn
t_js=

.,,.
e
co

cn
t_js=

va
r a

=
5

;
e
co

cn
t_p

d
f=

a
=

a
e
m

p
ty

0
.0 a

p
p

lica
tio

n
/ja

va
scrip

t
a
u

d
io

/w
a
v

e
m

p
ty

im
a
g

e
/p

n
g

te
xt/css

vid
e
o
/m

p
4

X
-C

o
n

te
n

t-T
yp

e
-O

p
tio

n
s

a
p

p
lica

tio
n

/p
d

f
te

xt/h
tm

l

C
o
n

te
n

t-T
yp

e

e
m

p
ty

1
.0 n
o
sn

iff

0
.0 te

xt/h
tm

l1
.0 a
p

p
lica

tio
n

/p
d

f

C
ro

ss-O
rig

in
-R

e
so

u
rce

-P
o
licy

S
ta

tu
s-C

o
d

e

e
m

p
ty1

.0 sa
m

e
-o

rig
in

0
.0 5

8
 va

lu
e
s1

.0 1
0

0
1

0
1

1
0

2
1

0
3

4
0

7

S
ta

tu
s-C

o
d

e

0
.0 6

2
 va

lu
e
sb
o
d

y

2
0

0

0
.0

1
1

 va
lu

e
s

C
ro

ss-O
rig

in
-R

e
so

u
rce

-P
o
licy

e
co

cn
t_a

u
d

io
=

d
u

ra
tio

n
=

1

0
.0 sa

m
e
-o

rig
in

C
o
n

te
n

t-T
yp

e

e
m

p
ty

X
-C

o
n

te
n

t-T
yp

e
-O

p
tio

n
s

a
p

p
lica

tio
n

/p
d

f
te

xt/h
tm

l

1
.0 a

p
p

lica
tio

n
/ja

va
scrip

t
a
u

d
io

/w
a
v

e
m

p
ty

im
a
g

e
/p

n
g

te
xt/css

vid
e
o
/m

p
4

0
.0

n
o
sn

iff

C
o
n

te
n

t-T
yp

e

e
m

p
ty

0
.0 a

p
p

lica
tio

n
/p

d
f1

.0 te
xt/h

tm
l

Figure
3.5:

D
ecision

trees
for

the
leak

channelobject-properties_
m
ediaError_

audio
in

C
hrom

e.

Chapter 4

XS-Leaks in the wild

Previous research has shown that XS-Leaks existed even on top-class websites such as
Google or Facebook potentially affecting millions of users [94, 56]. Additionally, we
know that most XS-Leak methods still work in modern browsers from the results of the
previous chapter. However, we do not know how big of an issue XS-Leaks are for the
web on a greater scope.

For an XS-Leak method to work, a URL has to return a response that leads to one
observation in state A and a response that leads to another observation in state B.
Unfortunately, there are no satisfactory estimates on how many websites possess SD-
URLs that are exploitable. Also, there exists no information on which inclusion methods
and leak methods work well in practice and which do not. Such information could guide
further development and allow more targeted action as methods that do not work in
practice have less urgency to be eliminated. The work by Sudhodanan et al. suggests
that XS-Leaks are quite a serious issue as they found at least one vulnerable URL on
all 58 websites they have tested [92]. The small number of tested websites and many
recent developments make it unclear if their results still apply today and generalize to
the larger web. Web developers might have learned from past vulnerability reports and
nowadays try to deliver indistinguishable pages for logged-in users and anonymous visitors.
Additionally, new web security features such as SameSite cookies or Fetch metadata
allow servers to return the same indistinguishable response for cross-site requests while
delivering different responses that would be distinguishable for same-origin requests.
Finally, bug fixes and other improvements in browsers can also reduce the number of
leaks.

In this chapter, we investigate the above-illustrated knowledge gap in-depth and answer
the research question: “Which XS-Leak methods work how often in the wild in different
browsers?”. Additionally, we investigate how many SD-URLs exist and how new security

37

38 Chapter 4 XS-Leaks in the wild

features are used and influence the prevalence of XS-Leaks. We also investigate whether
the differences between the browsers discovered in the previous chapter result in different
attack surfaces of the browsers. With the gathered information, such as which methods
often work in practice or primarily in one browser, browser vendors can prioritize their
countermeasures. Additionally, improved education can prevent web developers from
making common mistakes reducing the overall impact of XS-Leaks.

The first section of this chapter sets the scope of the investigation. The second section
introduces the fully automatic does-it-leak pipeline developed to find vulnerable URLs
on any website. The third section evaluates how reliable the different parts of the created
pipeline are and which stages need improvement. Finally, the last section summarizes
the results and shows that most websites are still vulnerable to XS-Leaks, but there are
considerable differences between the browsers and methods.

4.1 Scope

Analyzing XS-Leaks in the wild requires us to define what we consider the wild, which
state-differences we want to examine, and which leak channels we test. In this section,
we first describe which websites we tested and which crawl settings we used to cover a
sufficiently large part of the web. Then, we explain which state-differences we consider
and why it is hard, but not necessary, to qualify the exact state-difference leaked. In the
end, we list the leak channels studied in this chapter which are mostly the same as the
ones studied in the previous chapter.

4.1.1 Tested websites and crawl settings

Testing a sufficiently large sample of websites is necessary to understand how much of
an issue XS-Leaks are in the wild. For selecting websites, we need a selection criterion.
We decided on using the Tranco ranking [53] as the basis of website selection to test
high-ranked websites as vulnerabilities on them affect many users. A state-full crawling
approach is necessary to investigate XS-Leaks. Additionally, one needs to investigate
every tested website in-depth to find as many vulnerable URLs as possible instead of
only testing the landing page. These two considerations drastically decrease the possible
scale for XS-Leak studies in comparison to other web security studies.

We decided to seed the testing pipeline with the top 20,000 websites, according to
Tranco [53], to cover a broad set of high to medium popularity websites. As the tool
used to create state information on the websites only has a relatively low success rate

Chapter 4 XS-Leaks in the wild 39

of roughly 2%, we decided to additionally test all possible websites from the Tranco
top 50 with a semi-manual state creation step to cover more of the top websites. In
total, we successfully created state information on 430 websites and found 258 sites to
be vulnerable in at least one browser.

For every website we test, we first have to find all URLs belonging to that site that might
be vulnerable. In general, the more URLs, the higher the chance to find a vulnerable
URL. However, more time is needed to test more URLs, and the chance that the crawler
gets stuck in an infinite loop increases. These considerations suggest that a limit on the
crawling process is necessary. Therefore, we decided to crawl a maximum of 100 URLs
per website or to a maximum depth of three, whichever the crawler reaches first. It is
important to note that this does not mean only 100 URLs are tested per website, as
we also collect and test all requests issued on the visited documents, such as included
images or fetch requests to APIs.

Websites might also load slowly due to high load on their end or because they detected a
crawler. In addition, various other errors can also occur, such as connection failures or
browser crashes. To deal with these issues, we defined a maximum page loading time of
20 seconds and decided to test every URL a second time in case of an error or timeout.
This setting applies to both the crawling step as well as the dynamic confirmation step.
We describe the exact settings of the different programs in appendix B.

4.1.2 Considered state information

In principle, XS-Leaks can leak any possible state difference that exists between visitors
of a website. How many and what kind of states exist heavily depends on the tested
website. In addition, different URLs on a site might leak other state differences. For
example, a website might differentiate between first visit visitors and visitors that already
visited a page (Access detection), between logged-in users and anonymous visitors (Login
detection), between a specific user and everybody else (Deanonymization), between a
regular user and a premium user (Account type detection), and many more. These
various state differences differ in severity and in how hard it is to test for them. The
following describes the state difference considered in this thesis and the issues with
verifying what a detected state difference means.

To detect a state difference, one must test a URL in both state A and state B, e.g., a
logged-in premium user A and an anonymous visitor. If a difference is detected, one could
say that the website is vulnerable to login detection. However, this is not necessarily
correct. For example, it could also be a difference between user A and anybody else
(Deanonymization), when no difference between a logged-in user B and an anonymous

40 Chapter 4 XS-Leaks in the wild

visitor can be detected with this URL. To identify the reason for a detected state difference,
one must enumerate all states that an application has, test every URL in all states, and
compare the results. Enumerating a complete set of states is impossible without access
and understanding of a website’s application logic, as states could even be something
like users created on a specific day. For example, imagine a URL only accessible to users
on their birthday on a social networking site. In general, it is impossible to verify the
exact nature of an identified state difference automatically, and getting a reasonable
estimate by testing in many different states is impractical. For the above reasons, we
only test two states for every website, one logged-in user A and one anonymous visitor
B. These states are comparatively easy to create automatically. The pipeline will then
tell whether it could distinguish state A from state B or not. Most of the time, the
detected state difference will probably be login detection. However, we cannot verify
this. It could also be anything else that differs between the two states, such as the user
id (deanonymization) or that the logged-in user has accepted the cookie policy and the
anonymous visitor has not.

We argue that a creative attacker can abuse any detectable state difference and the
presence of any state difference hints at the existence of other, more problematic state
differences. Thus, we exclude the qualification of the actual state-property we distin-
guished on each URL from the scope of this thesis and will only report that we can
distinguish between states A and B.

4.1.3 Considered leak channels and browsers

As seen in the previous chapter, many leak channels exist, and some are harder to test
reliably than others. Overall, we decided to test the leak channels that we found reliable
in the previous chapter. In the following, we describe small changes made.

In addition to the channels of the previous chapter, we added the leak channel load count
to the events fired category. As observed previously, the order of the events can sometimes
be non-deterministic, and to account for this, we used the set of events. However, if, for
example, IFrames perform client-side navigations, more than one load event is fired. The
load count channel accounts for such cases as it counts the number of fired load events.

In the previous chapter, we included the leak channels global-properties_hasOwnProp-
erty_script and global-properties_getComputedStyle_stylesheet to show that they work
in general. These methods, however, require analyzing the content of the two returned
scripts or CSS resources to see if there are any differences in them and then add specific
checks to verify if a variable or a style only set in one state is present. The former attack
can often leak more than a single bit of state difference, and sometimes even directly leak

Chapter 4 XS-Leaks in the wild 41

a password or user name and is known under the name of Cross-Site Script Inclusion [55].
The latter can be called Cross-Site-Style-Inclusion [40, 29]. Both of these channels
would require significant engineering efforts, and several studies focusing on them already
exist [55, 29]. For these reasons, we decided not to cover them in this part of the thesis.
It is important to note that the primitive cases of these attacks, where one response is
a valid script or style, and the other is not, are already covered by other leak methods.
Valid stylesheets fire a load event, whereas other responses such as HTML documents
will result in an error event. If one response returns a valid JavaScript file and the other
does not, an onerror handler can detect this, and the global-properties_window.onerror
method covers this case.

We have seen no real difference in behavior between Chrome and Edge except for the
unstable global-properties_downloadbarheight method. Thus, we exclude MicrosoftEdge
from the tests in this chapter. In the end, we test the other two browsers considered in the
previous chapter: Firefox and Chrome, to reuse parts of the created testing infrastructure
and the created decision trees.

4.2 Does-it-leak pipeline

Fully automatically finding URLs vulnerable to XS-Leaks on a website is a challenging
task, consisting of many steps. To be able to solve this task, we built a pipeline able
to perform all needed steps. Here, we give a high-level overview of the pipeline, and
the following sections explain the specific implementation created for this thesis in more
detail.

Figure 4.1 provides an overview of the components of the does-it-leak pipeline. It consists
of a state generator, a stateful crawler, a static pruner, and a dynamic confirmator.
Every tested website runs through all these components in sequence, and in the end,
the pipeline outputs all vulnerable URLs. The following explains the task and general
structure of each component.

First, there needs to be a state generator component. This component is responsible for
creating at least two states on each tested website to be compared later. As explained
in the previous section, we consider the state of one logged-in user and one anonymous
visitor, but in principle, every state difference would be possible. The reached states
must be passed to the following components somehow. One could either rerun the state
creation actions in every component before any other action is taken or rely on the fact
that the state information is usually bound to the cookies of a session and share these

42 Chapter 4 XS-Leaks in the wild

State generator

Stateful crawler

Static pruner

Basic:

equal?

Yes

Dynamic confirmator

No difference

Test URL for
every inc and
browser 2x

- Site 1:

	 - URL A: channel N

	 - URL B: channel M

- Site 2:

	 - URL C: channel N,M

Leaky URLs

Visit site

Success?

No

Register?

yes

Login?

yes

Yes

URL,

resp1,

resp2

URL,

inc1,

inc2

No

No

Site, cookies

Crawl site with
cookies

Yes

No

Error?

(TLS)

Replay all requests
without cookies No

Yes

Advanced:

leakable?

No

"Same" difference

2X

Vulnerable URLs

With leak channels

Figure 4.1: Overview of the does-it-leak pipeline.

with the other components. For the pipeline, we decided on the latter and passed the
cookies along.

Second, we need a crawler to find URLs belonging to a site that might be vulnerable. In
principle, to find URLs on a website, every stock web crawler could be used. However, we
do not only want to find URLs included in <a> tags or similar on the visited websites.
We also want to record all requests made while visiting the site, including image resources
and dynamically created fetch requests, as all these URLs can also be vulnerable. The
crawler component does not necessarily have to be stateful. However, a stateful crawler
provides several benefits, such as increased coverage and generating the data needed for
a static pruning component. Suppose the crawler starts from a non-default state, such
as a logged-in user. In that case, it is more likely to detect potentially vulnerable URLs
as it has the chance of entering a protected area not accessible by anonymous visitors
where every URL might be vulnerable. A standard non-stateful crawler that only crawls
the website as an anonymous visitor would not find such URLs. Additionally, a stateful
crawler can visit every discovered URL in several states and collect the responses. The
collected responses can be used for pruning and quantifying which response pairs exist in
the wild.

Chapter 4 XS-Leaks in the wild 43

The third part is the static pruning component. This component is not strictly necessary
as one could test all found URLs for every inclusion method. However, it can significantly
reduce the time of the experiment and server load. The general idea is to exclude URLs
that returned two responses that cannot possibly be distinguished from each other by the
considered attack model and remove them from the set of URLs that will be dynamically
confirmed. We use a basic pruner that disregards all URLs that returned the same
response for both states, as well as a more advanced tree pruner built upon the results
from the previous chapter.

The last component is the dynamic confirmator. This component confirms that a URL
is vulnerable for a specific leak channel in a specific browser. First, it receives the list of
potentially vulnerable URLs, the list of leak channels to test, and the state information.
Then it tests every URL for each corresponding inclusion channel in all states in all
supported browsers using the automation setup and attack-page generator from the test
browser framework of the previous chapter. This step is necessary as vulnerable URLs
reported by the static pruning part might not be vulnerable cross-site due to SameSite
cookies, Fetch metadata, and other features. After the pipeline finishes all tests, it checks
which leak URLs (combination of target URL and inclusion channel) resulted in different
observed properties, making them distinguishable. It then retests all leak URLs found to
be vulnerable to reduce the chance of false positives. False positives can occur when the
request has timed out for one state, or if the number of frames on a page is random, or
for many other reasons.

4.2.1 State generator

Successfully creating at least two states on every tested website is a fundamental require-
ment when testing for XS-Leaks. We used two different approaches to create the initial
state on target websites. One is a modified version of cookiehunter [28], the other is
manual registration of accounts with replays of Selenium IDE scripts for login [85]. Both
approaches register one user, log the user in and then share the user state by exporting
all cookies. The other state is a user without any cookies set and does not need any
preparation. The following explains the structure and changes to cookiehunter and how
to create and use selenium login scripts.

The cookiehunter tool performs the complete process of registering user accounts, logging
in, and confirming that the login was successful without user interaction. The tool uses a
set of regular expressions and manually defined rules to find registration and login forms
and single sign-on (SSO) buttons on websites. If the tool finds a registration form, it
attempts to automatically fill it and then uses several oracles, such as if a mail is received

44 Chapter 4 XS-Leaks in the wild

or the registration form is not accessible anymore, to check if it was successful. It then
performs a similar process for the login procedure. For SSO, the researcher has to provide
accounts on the identity providers Google and Facebook, and the tool will click on the
SSO buttons and try to create a new account on the tested site. In the end, it performs
a request without cookies to check that the reported success is not a false positive. For
more details on the tool and its procedure, we refer to the original paper [28].

We modified the cookiehunter tool to make it work again in 2021. It used several outdated
libraries calling external APIs such as Gmail and Google translate that were not available
anymore, making the tool crash at startup. We ported the code from python2 to python3
and replaced all libraries with newer working versions. The SSO process for Google and
Facebook has changed, so we adapted the SSO steps. We additionally added one regular
expression but mainly left the original registration and login heuristics untouched. We
added additional code to pull the tested sites from the Tranco list [53] and send the
gathered cookies to the stateful crawler in case of a successful login.

The cookiehunter code is not open-source, and the success rate of roughly 2% is relatively
low. Therefore, we added another method of performing the state generation that we
can use as an alternative to cookiehunter. For this thesis, we manually tried to register
accounts on the top 50 websites, according to Tranco. Then, for each website where we
successfully registered an account, we recorded the login process with Selenium IDE [85]
including clicking on something only available for logged-in users, usually the profile icon,
to make sure that the login was successful. Selenium IDE can export the recordings to
python scripts. However, these exported scripts are not identical to the recording in
Selenium IDE, e.g., timing and fail-over strategies are different. Therefore, we created
a script to automatically make the exported python scripts more similar to the actual
recordings and add the cookie gathering step. Finally, we replayed these login scripts on
the server, and in case of a successful login, started the stateful crawler with the collected
cookies.

4.2.2 Stateful crawler

The stateful crawler is responsible for finding as many potentially vulnerable URLs
belonging to a site as possible. We use a crawler build upon the puppeteer automation
library [69]. The crawler first sets the cookies from the previous step and then visits
https://<site>/. It then enters all links found on the website’s landing page in a queue
and visits them until a maximum of 100 pages or a depth of three to not run into an
endless loop. As this process only finds URLs in <a> tags, we route all traffic of the
browser through a MITM proxy [18] to also save all URLs belonging to subresources, such

https://<site>/

Chapter 4 XS-Leaks in the wild 45

as images and dynamically created fetch requests. For all first-party GET requests, i.e.,
the potentially vulnerable URLs, we duplicate the requests and perform them without
cookies to get the response for an anonymous visitor.

The crawler should output not only a list of URLs belonging to a site but also save
all responses of every state as the static pruning component needs them. We decided
to only crawl in the logged-in state and perform the requests of the anonymous state
with the proxy. We reason that it is likely that the logged-in crawler finds resources
only accessible to logged-in users, such as profile pages. In contrast, it is unlikely that
an anonymous crawler will find resources only available for anonymous visitors. The
alternative would be to crawl in both states independently and then test every URL only
found in one state in the other. However, this would require high synchronization efforts.

4.2.3 Static pruner

The previous step generates thousands of potential URLs for most websites. Many of
these URLs belong to publicly accessible static documents, and testing them would
waste time. Therefore, we created a static pruning tool to reduce the load on the tested
websites and speed up the testing process. This tool analyzes the collected responses of
both states for every URL and removes all URLs where the dynamic confirmator should
not be able to distinguish the states. The pruning consists of three stages explained in
the following.

The first stage removes all URLs where we only have one observation. As the stateful
crawler only replays first-party GET requests, these removed URLs are mostly requests
to third parties and requests using other HTTP verbs such as POST or OPTIONS. In
addition, we removed a small number of requests where the first-party GET request
failed in one state. One reason for failing could be that a timeout occurred.

The second stage, called basic pruning, checks if a URL delivered the same response
for both states. Common sense tells us that it should be impossible for any dynamic
confirmator to distinguish two identical responses, so such a URL should not be leaky
and does not have to be tested. However, it is improbable that the identical response
was recorded twice due to ever-changing properties such as the date header. For this
reason, we have a more broad understanding of what it means that two responses are the
same. We first map the responses to an extended version of the response space we defined
in chapter 3. After that, for every response, only the status-code, the body hash, and
the smoothed value of the seven considered headers (location, content-type, X-Frame-
Options, content-disposition, Cross-Origin-Opener-Policy, X-Content-Type-Options, and
Cross-Origin-Resource-Policy) remain. In addition, we add the non-smoothed version of

46 Chapter 4 XS-Leaks in the wild

the location header as a difference here is enough to warrant further investigation. If
these smoothed responses are the same, we consider the original URL to be unleaky and
abort. Otherwise, we continue to the next pruning stage.

The third and final pruning stage uses the decision trees we introduced in the previous
chapter. To use the created trees and predict the outcome for every response, we first
have to convert the responses to fit the trees. The status-code automatically fits. Most
headers have simple transformation functions, can stay as they are, or in the backup
case, are treated as empty. For the body, this is more complicated as we cannot rely
on the content-type header as it can be empty or incorrect. Instead, we use the Linux
file command [36] as well as Apache Tika [6] to get the most likely actual content-type
of the document body. After determining the body type, we must map it to a body of
the created response space. This mapping works well for PDFs, images, audios, and
videos. For HTML resources, we only get the information that the body is of type HTML.
However, we cannot statically determine how many frames an HTML document has or if
it sends a postMessage. Therefore, we duplicate every response with inferred body-type
HTML for all four possible HTML body values in the response space to account for every
possibility.

In general, only the methods that have different predicted outcomes should potentially
be vulnerable. For some cases, such as image width, this is not the case. Even if the tree
predicted that both responses would lead to width 50, this does not automatically mean
that the URL is not vulnerable. It only means that we mapped both actual responses to
the training responses with an image of width 50 in the body, and the width is observable.
We add a post-processing step for these cases and check if the body hash is different,
and if yes, mark them as potentially vulnerable.

This stage goes further than saying a URL is potentially vulnerable but includes infor-
mation on which inclusion methods this URL might be vulnerable. This information is
crucial as otherwise, one would need to test every remaining URL for every inclusion
method. The static pruner passes all URL-inclusion method combinations, called leak
URLs, left after this final pruning stage, to the dynamic confirmator.

4.2.4 Dynamic confirmator

The static pruning component outputs a list of leak URLs. This list of potentially vulner-
able URLs with possible inclusion methods is much smaller than the total combination of
URLs multiplied by the number of inclusion methods. However, the list of leak URLs still
contains many non-leaky URLs. For example, the preprocessing step of body content can
introduce non-leaky URLs. One possible explanation is that not every HTML page sends

Chapter 4 XS-Leaks in the wild 47

a postMessage. Likewise, the post-processing step can also introduce non-leaky URLs.
For instance, if two responses have different body hashes but return images of the same
dimensions, they are not distinguishable by the tested methods. Additionally, non-leak
URLs can be introduced by defense mechanisms such as SameSite cookies or Fetch
metadata, resulting in not receiving the same responses cross-origin that we observed for
the same-origin requests. Last but not least, a URL might be invulnerable when other
factors such as time or randomness cause the differences in the returned responses. For
example, a site could return responses with a nondeterministically changing number of
frames due to different ads.

To only report true positives, i.e., URLs that leak state differences cross-site, we need to
confirm each potential URL dynamically. The dynamic confirmator takes a list of leak
URLs for every browser and tests every leak URL in both states using the attack-page
generator from the test browser framework. If the confirmator finds a difference, it tests
the leak URL a second time to ensure this was not due to chance or other errors. If the
leak works both times in the same way, we report the URL as vulnerable. Otherwise,
the does-it-leak pipeline will not confirm the URL as vulnerable. The definition of
same includes the case of having the same observations twice for both states, but also
additional less restrictive rules for some leak methods. For example, we accepted two
times zero frames in one state and two times non-zero frames in the other state as same
for the framecount method.

4.3 Pipeline Evaluation

For this thesis, we have created a complicated multi-step pipeline to answer the research
questions and detect XS-Leaks on many websites in a reasonable time. The pipeline
consists of adapted pre-existing tools as well as modules created from scratch. The results
show that the pipeline manages to find XS-Leaks in at least one browser on 258 websites.
However, they do not show in which step and for which reasons the pipeline failed.

In this section, we evaluate the different steps of the pipeline regarding false negatives
and false positives. First, we discuss the shortcomings of the state creator and why its
success rate decreased since its introduction by Drakonakis et al. Then, we analyze why
a successful login according to the state creator does not necessarily mean the website
gets crawled properly. After that, we show the effectiveness and applicability of both
main pruning steps.

48 Chapter 4 XS-Leaks in the wild

4.3.1 State creator

Checking for XS-Leaks on a website without access to the source code requires creating
and comparing at least two states on the tested website. As described earlier, we use the
states logged-in user and anonymous visitor in this thesis. Getting the crawler to the
state anonymous visitor is easy as this is the default state of every site. Automatically
getting to the state of a logged-in user is challenging. Out of 20,236 attempted sites,
the tools to create state information only succeeded on 430 sites. In the following, we
highlight several reasons for this.

We primarily used the cookiehunter tool [28] to register and login on roughly the Tranco
Top 20,000 [53]. With the modified version we achieved success on 18 of the Tranco
top 1,000 (1.8%) and success on 412 on all 20,236 attempted sites (2%). The original
paper [28] contains an extensive error evaluation on why the success rate is low, so we
refrain from redoing it and only summarize their results. Reasons range from no account
functionality existing on the site (on 86.6% of sites, the tool did not find one), over
input constraints (e.g., complicated password rules or valid credit card is required), and
anti-bot measures (e.g., captchas), to the login or registration oracles not being able to
confirm that they succeeded.

In the original paper, the authors report success on 95 of their top 1,000 (9.5%) and an
overall success rate of 1.6% on the complete set of 1,585,964 tested sites. Their results
suggest that higher ranked sites should have a higher success rate, and one reason might
be that most popular sites have account systems, whereas many long-tail websites do
not have account systems. Here, we will list reasons why the success rate in our runs
on the top 1,000 was significantly lower than what they reported. The tool uses several
outdated libraries, and some of these are not supported by the external APIs anymore
(e.g., the translation service used). As a result, the tool either misses functionality or
crashes. We ported the tool to recent versions and tried to fix such issues, but some
problems remain. Additionally, many websites now use bot detection frameworks, making
it impossible to register and log in with the current cookiehunter tool. Notably, during
the experiments for this thesis, the bot detection of Google SSO changed. Thus, after
the first few thousand sites, no login with Google worked anymore. Other sites in the
Tranco top 1,000 are only redirects and result in duplicates such as fb.me. Some sites
also did not load successfully or timed out. Additionally, although the SSO login with
Facebook and the email connection with Gmail worked in general, it was reset several
times during the experiment with no automatic option to re-enable it. Until we manually
repaired them, cookiehunter continued without these features. Also, many websites now
use more complicated or non-standard login and registration techniques, making them
undetected or unfillable by cookiehunter. In addition, aggressive cookie policy banners

Chapter 4 XS-Leaks in the wild 49

make some sites unusable until they are dealt with, and cookiehunter does not attempt
to close these banners to interact with the page.

As high-profile sites are particularly interesting, we added a second semi-manual login
strategy. We manually registered 26 accounts on the top 50 websites, according to Tranco.
On the other 24 websites, either no registration option was available (8), registration
required credit card or phone information (8), it failed due to language problems (5),
or it was a duplicate URL for another service in the list (e.g., youtu.be) (3). Replaying
the 26 created login scripts worked in 18 cases. The other seven failed due to risk-based
authentication requiring additional steps such as clicking on a link or solving a captcha.

4.3.2 Stateful crawler

The state creator passes every site for which the state creation was successful to the
stateful crawler, including the corresponding cookies. However, the stateful crawler
did not crawl all of these 430 sites successfully. We list reasons why the crawl process
sometimes fails and general statistics on the crawling process in the following.

The crawler itself saved how many URLs it tried to access, and the proxy saved all
network requests routed through it, including all subresources. Unfortunately, due to
data loss, we only have information of the crawler itself for 396 of the 430 sites. For 85
sites, the crawler only tried the initial URL meaning some error occurred. For another
290 sites, the crawler crawled 100 URLs. For the remaining 21 sites, the crawler crawled
between one and 100 URLs, meaning it reached its maximum depth limit. The static
pruner component takes the URLs saved by the proxy as input, and even if the crawler
only tried the initial URL, there still can be several vulnerable URLs recorded by the
proxy. In the following, we focus on the data created by the proxy part of the stateful
crawler.

On 29 sites, the proxy did not record a single URL. On 25 sites, this is due to TLS
problems. These sites either delivered incorrect certificates or did not support HTTPS
at all. We decided not to ignore such errors and skip websites with TLS problems in the
stateful crawler as a secure origin is necessary for some of the studied features. Moreover,
modern browsers will display a severe warning before accessing insecure sites. However,
such sites still can get passed to the crawler as the state creator component ignores all
certificate errors due to legacy reasons. For the other 4 unsuccessful sites, the proxy
timed out. These timeouts could be due to bad luck, such as server maintenance or bot
detection deployed by the site.

50 Chapter 4 XS-Leaks in the wild

Original URLs Basic pruning URLs Leak URLs Chrome tests Firefox tests

mean 535.83 82.37 988.43 252.39 279.50
std 641.28 88.39 1060.73 433.58 451.04
min 1.00 0.00 0.00 0.00 0.00
50% 352.00 72.00 864.00 147.50 174.50
max 6252.00 580.00 6960.00 6745.00 6750.00

Table 4.1: URLs and tests per site before and after pruning.

On an additional 29 sites, the proxy recorded less than 20 unique URLs. The low number
of recorded URLs indicates that errors occurred as most tested sites should have more
URLs. Cross-site redirects on the landing page are one reason that occurred on at
least six sites. For example, the state creator reported that it managed to log in on
readthedocs.io, but the initial page redirects to readthedocs.org, leading to a stop of
crawling as we configured it to crawl readthedocs.io. Another reason is that some sites
detected the crawler as a bot and responded with a no access for bots page or the crawler
timed out or crashed on one of the initial pages. It is important to note that a site can
still be vulnerable even if there is a cross-site redirect on the initial page, so we did not
remove them.

4.3.3 Static pruner

Testing all combinations of found URLs with all inclusion methods in all browsers would
take a long time and would require many requests. Therefore, to make the search for
XS-Leaks more efficient, we proposed a static pruning step that heavily reduces the
number of performed tests. We can analyze the pruning in two regards: is it effective, i.e.,
how many requests does it save, and is it correct, i.e., does it introduce false negatives.
We evaluate both questions against the basic pruning step and the advanced pruning
step in the following.

Table 4.1 provides the efficiency measurements for this evaluation. The first column
shows the number of URLs per site. The second column shows the number of URLs
remaining after the basic pruning step. The third column shows the number of tests
needed if every URL remaining after the basic pruning step would be tested for every
inclusion method. The last two columns show how many tests per site remain for both
browsers after the advanced pruning step. The basic pruning step reduces the average
number of potentially vulnerable URLs from 536 to 82, or by 85% in total and 79% on
average per site. The maximum value is reduced from 6,252 to 580, or by 90%. Without
the advanced tree pruning, we need to test every remaining URL in all inclusions methods.
The advanced pruning reduces the average number of tests from 988 to 252 in Chrome
and 280 in Firefox, which is an additional 74% and 72% reduction.

Chapter 4 XS-Leaks in the wild 51

Grouping URLs P-URLs GT TP FP FPR FN TN FNR

Target URLs
Basic-all 32,952 5,766 487 382 5,384 0.17 105 27,081 0.22
Firefox 16,476 2,883 230 175 2,708 0.17 55 13,538 0.24
Chrome 16,476 2,883 257 207 2,676 0.16 50 13,543 0.19

Advanced-all 5,766 5,705 382 382 5,323 0.99 0 61 0.00
Firefox 2,883 2,857 175 175 2,682 0.99 0 26 0.00
Chrome 2,883 2,848 207 207 2,641 0.99 0 35 0.00

Leak URLs
Basic-all 395,424 69,192 981 781 68,411 0.17 200 326,032 0.20

Advanced-all 69,192 17,052 781 747 16,305 0.24 34 52,106 0.04
Firefox 34,596 9,062 350 342 8,720 0.25 8 25,526 0.02
Chrome 34,596 7,990 431 405 7,585 0.22 26 26,580 0.06
audio 5,766 475 4 0 475 0.08 4 5,287 1.00
embed 5,766 1,340 16 12 1,328 0.23 4 4,422 0.25
embed-img 5,766 1,382 14 14 1,368 0.24 0 4,384 0.00
iframe 5,766 2,296 172 169 2,127 0.38 3 3,467 0.02
iframe-csp 5,766 2,304 163 161 2,143 0.38 2 3,460 0.01
img 5,766 466 6 6 460 0.08 0 5,300 0.00
link-prefetch 5,766 386 15 2 384 0.07 13 5,367 0.87
link-stylesheet 5,766 539 50 48 491 0.09 2 5,225 0.04
object 5,766 504 15 14 490 0.09 1 5,261 0.07
script 5,766 2,376 73 73 2,303 0.40 0 3,390 0.00
video 5,766 386 5 0 386 0.07 5 5,375 1.00
window.open 5,766 4,598 248 248 4,350 0.79 0 1,168 0.00

Table 4.2: Static pruner false positive evaluation.

The efficiency measurements show that the pruning step drastically reduces the time
and requests needed. However, if the pruning misses too many vulnerable URLs, it is
not worth it. To test for the applicability of the pruning, we reran the pipeline without
pruning on 50 sites where we found leaky URLs for both Chrome and Firefox. On 36 out
of 50, the re-login worked according to the state creator. For the others, the login failed.
The re-login failed for several reasons. First, Google changed their SSO deployment in
the meantime and now detects the creator as a bot. Additionally, sites can change all the
time resulting in non-working logins. Moreover, sometimes the state creator manages to
log in and register in one go but cannot log in independently. Out of these 36 sites, the
pipeline crawled 34 successfully and found 30 vulnerable in at least one browser again.

We retroactively applied both pruning steps on these unpruned runs to analyze if the
pruning steps would introduce any false negatives. Table 4.2 shows the results of this
evaluation. The upper half shows the results for the target URLs and the lower half for
the leak URLs. Both halves are further divided into basic pruning on top and advanced

52 Chapter 4 XS-Leaks in the wild

pruning below. The first column shows which subset of data is considered. The second
column lists the number of URLs or leak URLs without pruning. The third column
shows the number after pruning. The fourth column shows the discovered vulnerabilities
(ground truth). The remaining columns show the true positives, false positives, false
positive rate, false negatives, true negatives, and false negative rate.

The does-it-leak pipeline would have missed 105 of the 487 vulnerable URLs and 234
of the 981 leak URLs with both pruning steps. The first row shows that all of the 105
vulnerable URLs missed are due to the basic pruning step. The first two rows in the
second half show that out of the 234 leak URLs missed, 200 are due to the basic pruning
step, and 34 are due to the advanced pruning step. The other rows show how the false
negatives are distributed over the browsers and inclusion methods. Out of these 34
missed leak URLs, 13 use link-prefetch in Chrome which we concluded to be unstable
in the previous chapter and thus removed. The other 19 have unclear reasons. It is
important to note that for most websites, the pruning steps did not miss any vulnerable
URLs and leak URLs. Instead, only a couple of sites are responsible for the majority
of the false negatives, with one site being responsible for 90 out of the 234 missed leak
URLs.

The advanced pruning based on the decision trees is highly effective without adding many
false negatives. The basic pruning is practical as well. However, it adds a false negative
rate of 22% with a false positive rate of 17% for the number of vulnerable URLs found.
The basic pruning step is a necessary preprocessing step, and it is impossible to use the
tree pruner without it. Furthermore, the basic pruning step only removes responses that
do not differ in any of the seven considered headers, status-code, or body hash. The
105 URLs distributed over 200 leak URLs missed by the basic pruner can have various
reasons explained next.

One reason for false negatives is that the pruning might remove information responsible
for the distinguishable observations. For example, we do not consider the CSP header,
which can be responsible for different observations if the frame-ancestors directive is used
inconsistently in both states. Another problem is collecting the data input for the basic
pruner with one same-origin visit per state for each URL in one browser only. It might,
however, be that a URL is only leaky for cross-site requests. This behavior is possible
as the server can check Fetch metadata and similar and only responds unsafely if the
request is cross-site. Another explanation might be that the responses are based on the
user-agent. The responses are not leaky for the user-agent used in the crawling step but
only for the user-agent used in the dynamic confirmation part. Other possible reasons
are server-side randomness and timeshift. In such cases, the server delivered unleaky
responses during the initial crawl but leaky responses during the dynamic confirmation.

Chapter 4 XS-Leaks in the wild 53

This behavior can either be due to time difference, e.g., a resource was deleted in the
meantime, or random behavior of the server, for example, caused by load balancers or
A/B testing. It might also be that other server-processing changes related to the crawl
occurred, e.g., it might be that one state got rate-limited and the other did not. In
such a case, the states in the pruning step and confirmation step differ, as we are now
comparing a rate-limited state with a non-rate-limited state. We already confirm every
leak URL twice to reduce this problem, but two times might not always be enough.

4.4 Results

The main question in this chapter and the complete thesis is “Which XS-Leak methods
work how often in the wild in different browsers?” With the created pipeline, we could
find vulnerable URLs on 258 out of 352 sites where we dynamically tested for them.
These results show that the issue of XS-Leaks still prevails. Furthermore, we can use the
collected data not only to tell which sites are vulnerable to XS-Leaks but also to create
other insights. For example, the data reveals which dangerous response patterns exist,
which inclusion channels are particularly powerful, and which differences between the
browsers exist.

In this section, we present the essential results of collected data. First, we investigate
the responses collected by the stateful crawler and uncover that some security headers
are rarely used, whereas others are often used insecurely. We also show considerable
differences between the responses to the requests of the logged-in state and the anonymous
state, hinting at dangerous coding practices. Then, we investigate response pairs in more
detail and find several anti-patterns of common but dangerous response combinations.
We also investigate the security settings of the cookies collected by the pipeline and
show that most websites rely on the default behavior of browsers for the important
SameSite flag. Then, we answer the main question and split up the vulnerable results
by browsers, sites, inclusion, and leak methods. We show that there are considerable
differences between the studied browsers and methods and the tested sites. Finally, we
present potential issues that can affect the validity of the presented results.

4.4.1 Headers and responses

The crawling framework records all outgoing requests from all visited websites using a
proxy. The saved data includes all kinds of requests such as GET, POST, OPTIONS,
CONNECT to a range of URLs as most websites include third-party content. However,
as explained earlier, we are only concerned with first-party GET requests and only replay

54 Chapter 4 XS-Leaks in the wild

GET POST OPTIONS CONNECT HEAD PUT PATCH
Cookies

True 811,700 64,353 6,246 1,558 289 30 3
False 217,654 0 0 0 0 0 0

Table 4.3: All requests saved by the stateful crawler by HTTP verb and state.

these without cookies. Many URLs are requested several times, e.g., many websites
include a company logo on every HTML document. In the database, we only saved the
first response to a request from each state and outgoing site as long as the HTTP version
and the returned status-code did not change and otherwise increased a counter that the
URL was requested several times. In this section, we investigate what information the
collected response data contains.

Table 4.3 shows all requests excluding the retest of some sites for the evaluation section.
A total of 1,101,834 responses is in the database. Excluding all third-party requests and
all non-GET requests, a total of 464,411 responses remain. Next, we exclude all requests
that only have an observation for one state, i.e., the other request failed for some reason.
Finally, we removed the requests that have returned more than one status-code for the
same state, mostly these are requests that got rate-limited during the crawl and observed
the code 429 once and another code once. In the end, 215,276 unique URLs with two
observed responses remain, and we consider these pairs in the following.

On all of these 215,276, we can get statistics on how often various status-codes and
headers occurred. These statistics reveal if there are any differences between logged-
in users and anonymous visitors and other observations. Table 4.4a shows the most
commonly observed headers on all responses. The most common header date occurs
on almost every response. The next most common header content-type occurs on only
slightly fewer responses. However, overall, only nine headers occur on more than half of
the responses. Table 4.4b shows the number of unique values for both states for every
considered property. Most of the studied features have the same number of unique values
for both states. The features body and CSP have more unique values for the logged-in
state, and the location feature has more unique values for the anonymous state. In the
following, we investigate the seven studied headers, status-codes and content bodies in
more depth.

Content-type: Table 4.5a shows the most common content-types observed for both
states. The by-far largest group of all responses is images. For most image types, the
logged-in state observed slightly more images except image/webp, which was more oftenly
observed by the anonymous state. The second-largest group of responses is HTML, with

Chapter 4 XS-Leaks in the wild 55

Header Count

date 425,780
content-type 418,644
server 382,989
cache-control 351,697
content-length 306,993
last-modified 290,722
etag 263,371
vary 235,971
accept-ranges 227,764
expires 179,119
age 177,221
content-encoding 151,954
strict-transport-security 151,116
x-cache 141,071
x-content-type-options 135,813

(a) The 15 most common headers observed.

Property Cookies No cookies

url 215,276 215,276
site 403 403
status-code 25 26
body 183,183 182,054
content-type 164 165
x-frame-options 27 26
content-disposition 64 64
cross-origin-opener-
policy

5 5

x-content-type-options 6 6
cross-origin-resource-
policy

3 3

content-security-policy 1,445 1,362
location 5,544 6,817

(b) Number of unique values for all relevant prop-
erties in both states.

Table 4.4: General statistics of the collected responses.

slightly more results in the anonymous state. The third-largest type of responses is
JavaScript. In the fourth place, we have CSS followed by the Empty content-type directly
after. The Empty content-type occurs roughly in 200 more cases for the anonymous
visitor. Finally, there is a large tail with other content-types usually occurring the same
number of times for both states.

X-Frame-Options (XFO): Table 4.5b shows the most common X-Frame-Options values
observed for both states. Roughly 23% of responses use X-Frame-Options. There is
almost no difference in the occurrences of SAMEORIGIN, but DENY occurs more
often for the logged-in state. A couple of ALLOW-FROM values are invalid, including
ALLOW-FROM * or ALLOW-FROM ’self’, suggesting that developers are mixing up
headers as this syntax is valid for CSP frame-ancestors. Several responses also contained
several X-Frame-Options headers (folded with commas here). Sometimes specifying
the same value twice, and sometimes specifying DENY once, and SAMEORIGIN once,
probably resulting in unwanted edge case behavior.

Content-disposition: Table 4.5c displays the most common content-disposition values
for both states. The content-disposition header occurs more often for the anonymous
visitor. However, this is mostly due to inline. The attachment value is more prevalent
for the logged-in user, suggesting login-protected downloads. We have trimmed all values
until the first ;, to group all responses with different names together. However, several
entries did not specify anything in front of the ; or only a filename.

56 Chapter 4 XS-Leaks in the wild

Value Cookies No cookies Sites

image/jpeg 56,972 56,048 290
image/png 28,886 27,551 335
image/webp 22,081 23,935 108
text/html; charset=utf-8 16,404 16,699 269
text/html; charset=UTF-8 13,353 13,649 270
application/javascript 10,756 10,746 301
image/svg+xml 10,170 10,166 265
image/gif 7,025 6,899 219
text/css 6,510 6,483 303
Empty 5,833 6,075 222

(a) Content-type

Value Cookies No cookies Sites

Empty 165,450 165,951 395
SAMEORIGIN 32,539 32,546 240
DENY 9,693 9,189 146
sameorigin 2,593 2,627 30
SAMEORIGIN, SAMEORIGIN 1,259 1,230 17

1,081 1,081 2
deny 860 952 27
Sameorigin 301 301 1
ALLOW-FROM * 259 259 1
ALLOWALL 259 259 13

(b) X-Frame-Options

Value Cookies No cookies Sites

Empty 201,480 199,739 403
inline 13,028 14,799 90
attachment 668 638 29

29 29 1
filename=”jpeg” 7 7 1
filename=pixel.png 5 5 1
filename=”png” 2 2 1
filename=310148.jpeg 1 1 1
filename=310078.jpeg 1 1 1
filename=310121.jpeg 1 1 1

(c) Content-disposition

Value Cookies No cookies Sites

Empty 214,898 215,003 403
same-origin 154 154 2
same-origin-allow-popups;report-
to=”coop”

191 86 1

same-origin-allow-popups 31 31 2
unsafe-none 2 2 1

(d) Cross-Origin-Opener-Policy

Value Cookies No cookies Sites

Empty 147,037 147,702 388
nosniff 67,155 66,551 288
nosniff, nosniff 1,076 1,015 18
nosniff, nosniff, nosniff 5 5 1
Nosniff 2 2 1
”nosniff” 1 1 1

(e) X-Content-Type-Options

Value Cookies No cookies Sites

Empty 210,358 210,353 403
cross-origin 4,916 4,921 12
same-site 2 2 1

(f) Cross-Origin-Resource-Policy

Value Cookies No cookies Sites

Empty 208,889 207,108 397
https://www.instagram.com/ac-
counts/login/

0 169 1

https://accounts.adafruit.com/user-
s/sign_in

74 88 1

/login 27 96 17
/ 49 44 36
https://faucetcrypto.com/login 0 56 1
https://authorize.feed-
books.com/user/login

26 26 1

https://www.tomford.com 44 0 1
/features/qualified-electronic-
signatures

22 22 1

https://www.inspectlet.com/signin 21 22 1

(g) Location

Value Cookies No cookies Sites

empty 6,122 7,069 307
GIF image data, version 89a, 1 x 1 606 606 19
GIF image data, version 89a, 1 x 1 424 424 4
GIF image data, version 89a, 1 x 1 349 349 1
GIF image data, version 89a, 1 x 1 297 274 8
GIF image data, version 89a, 2 x 2 323 192 5
GIF image data, version 89a, 1 x 1 222 222 1
ASCII text, with no line terminators 216 216 1
ASCII text, with no line terminators 244 184 61
HTML document, UTF-8 Unicode
text

203 198 1

(h) Response bodies

Table 4.5: Ten most common values occurring for both states for the considered
properties.

Chapter 4 XS-Leaks in the wild 57

Cross-Origin-Opener-Policy (COOP): Table 4.5d reveals that the Cross-Origin-Opener-
Policy is not used a lot yet. Mainly a secure value is set for both states. However, one
site sets a value for the logged-in state leading to potential XS-Leaks. The unsafe value
of unsafe-none only occurred two times.

X-Content-Type-Options (XCTO): Table 4.5e presents the observations for the X-
Content-Type-Options header. The X-Content-Type-Options header is set on around
31% of responses with a slightly higher number on the logged-in state and several
responses setting the header several times.

Cross-Origin-Resource-Policy (CORP): The Cross-Origin-Resource-Policy header is
almost never used yet as can be seen in table 4.5f. Only two responses use a secure value
same-site, whereas a higher number of around 4,920 responses use the insecure value of
cross-origin. We explain this observation by the need to set the value to use it on other
pages using COEP [20] to make use of features such as SharedArrayBuffer.

Location: Table 4.5g shows the observed locations. For the location header, many
sites seem to redirect visitors on protected resources to their login page. For some sites,
both states are redirected roughly the same number of times to a login page. These are
probably sites where the session sharing via cookies failed, so both states are the same.

Response bodies: Table 4.5h displays the most commonly found bodies. For the body,
6,122 times it was empty in the logged-in state, and 7,069 times it was empty in the
anonymous state. Most other bodies only occurred once in both states or only once in
one state and never in the other. Most of the often occurring bodies appear to be 1x1
Pixel images that websites probably use as tracking pixels.

Status-code: As seen in the previous chapter, status-codes are one of the most important
properties for XS-Leaks, and some status-code differences can be distinguished regardless
of other properties. Table 4.6 displays the most common observed status-codes. Both
states have the standard status-code 200 for most responses. However, the anonymous
visitor has around 3,400 occurrences less of it than the logged-in user. Most redirection
codes occurred significantly more often for the anonymous visitor, with a difference of
1,623 for code 302 and 171 for code 307. Client error responses also occur more often
for the anonymous visitor, with relatively small differences for 404 and 403 and large
differences for 429, 401, and 400. The latter two seem to be normal server behavior if
visitors access content meant for logged-in users. The 429 rate-limiting status-code is

58 Chapter 4 XS-Leaks in the wild

Value Cookies No cookies Sites

200 204,522 201,177 397
302 3,050 4,673 305
301 3,327 3,351 337
204 1,008 979 23
206 826 825 50
404 796 840 158
403 520 720 85
429 152 732 8
101 437 247 36
401 31 649 60
202 260 259 6
400 27 313 27
307 72 243 22
303 66 106 17
500 62 72 27
520 59 10 1
503 18 26 10
308 18 18 6
502 9 10 3
504 7 6 4
304 4 4 1
410 2 4 3
205 0 5 1
440 0 5 1
451 1 1 1
550 1 1 1
405 1 0 1

Table 4.6: All status-codes for both states.

interesting. Both states request every URL the same number of times with similar speeds,
and the logged-in state even performs additional requests to the server (e.g., POST).
This observation suggests that some websites have stricter rate limits for anonymous
visitors than for users of their service. If the rate-limiting is done server-wide, every URL
of the service might be used as an XS-Leak oracle if an attacker counts the number of
requests until the rate limit is detected. We note that we do not perform such tests and
only accidentally got rate-limited. Some other results are that the non-standard 440
Login Time-Out code only occurred for the anonymous visitor, and another non-standard
code: 520 Web Server Returned an Unknown Error, occurred almost six times more
often for the logged-in state. A 101 code suggesting a successful creation of a websocket
appeared twice as likely for logged-in users. For the other 2XX codes and 5XX codes,
there are no noteworthy differences between both states. We did not observe other codes
such as 419 or 100.

Chapter 4 XS-Leaks in the wild 59

Complete response Minimal pruning Basic pruning Count

non SD non SD non SD 4,972
SD non SD non SD 38,267
SD SD non SD 138,822
SD SD SD 33,215

Table 4.7: State-dependent URLs according to different definitions.

4.4.2 Response pairs

In the above section, we presented the overall statistics of all observed responses. However,
of particular interest are pairs of responses belonging to the same URL as only SD-URLs
with two different responses are possible candidates for XS-Leaks. This section gives an
overview of how many SD-URLs exist, and within the SD-URLs, which combinations
occurred, e.g., code 200 switched to code 401.

State-dependent URLs (SD-URLs): For a URL to be vulnerable, it has to be an
SD-URL, but not every SD-URL is exploitable. The crawling framework requested every
first-party GET request without cookies immediately after every request with cookies.
Using this methodology, we collected two entries for every URL. It is important to note
that the following statistics are only estimates of SD-URLs. For a real SD-URL, the
difference in the responses has to be caused by the state difference studied. However, the
response of a URL can differ for many other reasons as well. One reason is timeshift, as
resources can change all the time. The replay of requests in the proxy minimizes the time
difference between the two requests. However, a small time difference still exists. Another
reason is server-side randomness in the responses. Such randomness can be caused by
A/B testing or load balancers and similar not related to the state. Lastly, the GET
request might not be idempotent. For example, a server implementing a /delete/<id>

GET endpoint might return a 200 status-code for the first request and a 404 status-code
for a second request as the resource is already deleted. Due to all the above reasons,
responses can differ without depending on the state difference we control. Thus, the
SD-URLs statistics likely overestimate the actual number of SD-URLs.

Table 4.7 lists the number of state-dependent and non-SD-URLs according to different
definitions of what counts as the same response. Checking for complete equality, i.e.,
all headers, status-code, and body have to be equal, reveals that only 4,972 out of all
215,276 are non-SD-URLs according to this definition. This fact can be explained by the
fact that headers that introduce much randomness such as date, server, cache-control,
last-modified, etag, vary, expires, and age are set for most responses as can be seen in
table 4.4a. Removing this set of high variance headers that should not influence XS-Leak

/delete/<id>

60 Chapter 4 XS-Leaks in the wild

mean std min median max
Browser

Firefox 3.61 3.44 0 2.0 12
Chrome 3.26 3.47 0 2.0 12

Table 4.8: Average number of leak URLs per basic pruned URL.

behavior an additional 38,267 URLs are regarded as non SD-URLs. Using the basic
pruning step, i.e., ignoring all headers other than the seven headers we tested in the
previous chapter, an additional 138,822 URLs are marked as non-SD, and only 33,215
URLs remain as SD-URLs. Out of the remaining 33,215 URLs, only 1,008 URLs have the
same body for both responses suggesting that SD-URLs that only differ in the headers
or code are rare.

Not every SD-URL is distinguishable by the considered leak methods. For example, two
responses that both have XFO=deny and COOP=same-origin set and differ in the body
cannot be distinguished by the framecount method as no access is possible for both
responses. We can use the decision trees to get a better estimate of which SD-URLs the
tested methods can distinguish. In this case, the tree pruning module would correctly
remove a SD-URL with such a response pair from the dynamic tests as the tree correctly
predicts that no access is possible for both responses.

The additional tree pruning step reduces the number of URLs from 33,215 to 30,485 in
Chrome and 30,614 in Firefox. The additional reduction of the trees might seem small
at first. However, the trees mainly decide which inclusion channel should be tried for
a URL and not that a URL should not be tried at all. Table 4.8 displays the average
number of tested leak URLs per basic pruned URL. On average, we only tested 3.4 out
of 12 inclusion methods for every remaining URL. All responses that redirect to different
locations are tested in all 12 inclusion methods, as we do not know the features of the
final response.

Response pairs: In the previous section, we have seen which values exist how often for
both states without considering the exact response pairs. These results indicate server
behavior. For example, if the anonymous visitor observes code 401 more often than the
logged-in user, it indicates that some resources are only accessible by logged-in users.
However, this is not necessarily the case as one state could get response code 401 for
500 URLs, and the other state could get the code 401 for 500 different URLs leading
to skewed statistics. To investigate the changes further, we list how often a property
changed between the states for the URLs in the following.

Chapter 4 XS-Leaks in the wild 61

Value cookies Value no-cookies URLs Sites

image/png image/webp 1,254 27
image/jpeg image/webp 591 23
text/html; charset=UTF-8 text/html; charset=utf-8 133 22
text/html; charset=utf-8 Empty 81 18
text/html;charset=UTF-8 Empty 40 9
Empty text/html; charset=utf-8 20 9
text/html; charset=utf-8 text/html; charset=UTF-8 58 8
application/json; charset=utf-
8

text/plain; charset=utf-8 27 8

application/json text/html; charset=UTF-8 19 8
text/html; charset=utf-8 text/html 16 8
application/json; charset=utf-
8

text/html; charset=utf-8 134 7

text/html text/html; charset=utf-8 51 7
image/gif image/webp 11 7
application/json; charset=utf-
8

Empty 30 5

image/gif text/html; charset=utf-8 27 5
application/json text/html; charset=utf-8 9 5
Empty text/html 79 4
text/plain; charset=UTF-8 application/json 50 4
application/json;
charset=UTF-8

text/html; charset=UTF-8 49 4

text/html; charset=UTF-8 text/html 9 4

(a) Content-types

Value cookies Value no-cookies URLs Sites

SAMEORIGIN Empty 631 38
Empty SAMEORIGIN 201 18
DENY Empty 86 10
Empty DENY 51 7
sameorigin Empty 9 5
DENY SAMEORIGIN 432 3
SAMEORIGIN, SAMEORI-
GIN

Empty 24 3

SAMEORIGIN, SAMEORI-
GIN

SAMEORIGIN 5 2

deny Empty 3 2
SAMEORIGIN,deny deny 57 1
SAMEORIGIN, sameorigin sameorigin 43 1
DENY deny 37 1
SAMEORIGIN,SAMEORI-
GIN,deny

deny 1 1

(b) X-Frame-Options

Value cookies Value no-cookies URLs Sites

Empty inline 1,821 31
inline Empty 50 6
attachment Empty 30 4

(c) Content-disposition

Value cookies Value no-cookies URLs Sites

same-origin-allow-
popups;report-to=”coop”

Empty 105 1

(d) Cross-Origin-Opener-Policy

Value cookies Value no-cookies URLs Sites

nosniff Empty 858 35
Empty nosniff 193 21
nosniff, nosniff nosniff 61 2

(e) X-Content-Type-Options

Value cookies Value no-cookies URLs Sites

Empty cross-origin 15 1
cross-origin Empty 10 1

(f) Cross-Origin-Resource-Policy

Value cookies Value no-cookies URLs Sites

Empty /login 60 12
/ Empty 10 6
Empty / 9 6
Empty /login.php 7 2
/dashboard Empty 2 2
Empty /login?ref=/myaccount 2 2
Empty /login?ref=%2Fmy-

groupons%2Fend-
points%2Fvoucher_...

2 2

Empty /login?ref=%2Fmystuff 2 2

Empty
/lo-
gin?ref=%2Fmystuff%2Fbuy
_it_again

2 2

Empty /login?ref=%2Fwishlist 2 2
Empty /login?return_to=/subscrip-

tion_center
2 2

Empty /signin 2 2
Empty https://www.insta-

gram.com/accounts/login/
168 1

Empty https://faucetcrypto.com/lo-
gin

55 1

https://www.tomford.com Empty 44 1
Empty https://theol-

dreader.com/users/sign_in
37 1

https://ahrefs.com/user/login Empty 32 1
/browse Empty 27 1
Empty https://por-

tal.nofraud.com/user-
s/sign_in

26 1

Empty /auth/login/sanchez-
mendoza/

25 1

(g) Location

Value cookies Value no-cookies URLs Sites

200 302 2,140 194
302 200 497 99
200 401 497 46
200 403 266 28
302 403 20 16
200 400 210 15
200 307 164 13
200 404 73 12
200 301 45 11
403 200 83 9
200 303 41 9
301 200 31 9
200 500 9 8
200 429 568 6
404 403 12 6
307 200 8 5
200 503 10 4
403 302 5 4
101 400 76 3
302 301 30 3

(h) Status-code pairs

Table 4.9: Twenty most common differing response pairs for all considered properties.

62 Chapter 4 XS-Leaks in the wild

Content-type: Table 4.9a displays the most common content-type changes for all
response pairs. The largest group of changes is from image/(png|jpeg) to image/webp.
This change seems to be an artifact of first versus second request and not connected to
the actual state difference. Other changes that occur relatively often, however, behave
as expected. There are relatively many changes from various content-types such as
application/json to text/html, text/plain or Empty. Interestingly, several responses
changed from Empty to text/html. These could be non-idempotent GET requests that
return an error page when the action is not possible anymore.

X-Frame-Options (XFO): Table 4.9b displays the changes for the X-Frame-Options
header. The settings are usually more secure for the cookie state, but it can also be the
other way round. 631 URLs on 38 sites change from SAMEORIGIN to Empty, whereas
only 201 URLs on 18 sites change from Empty to SAMEORIGIN. Six of these sites are
in both sets and change the value in both directions. It is also interesting to note that
on one site, the value changed from DENY to deny. These results suggest that several
applications do not set the XFO flag in a single place in their application and sometimes
forget to set it at all for some resources.

Content-disposition: Table 4.9c displays the changes for the content-disposition header.
For many URLs, inline is only set for the anonymous state, suggesting it might be set
only on an error page. However, the default behavior of this header is inline, so this
difference cannot be leaked if it is the only difference. For four sites, the difference
between content-disposition attachment and Empty is detectable.

Status-code: The results for status-codes can be seen in table 4.9h. There are many
changes from code 200 to redirection codes (302, 307, 301) and various error codes (401,
403, 400, 404, 429, 500). The high number of URLs where the status-code changed from
200 to 429 indicates that these six sites have lower rate-limiting thresholds for anonymous
visitors. There are also some changes from error or redirection codes to code 200, but
these are less common than in the other direction.

Remaining properties: Table 4.9d shows that only one site has state-dependent COOP
settings. Table 4.9e depicts that 35 sites set the nosniff value only for the logged-in state
for some URLs. Ten out of these 35 sites and another eleven sites only set the nosniff
value for the anonymous state for some URLs. Table 4.9f shows that CORP is only set
for the logged-in state on one site and only set on requests without cookies on another
site. Table 4.9g demonstrates that the location header is often empty for the logged-in

Chapter 4 XS-Leaks in the wild 63

Security flag Cookies Sites
sameSite secure httpOnly

Lax False False 855 225
True 43 21

True False 67 38
True 80 60

None False False 74 13
True 14 6

True False 423 117
True 220 99

Not set False False 3,613 345
True 231 129

True False 261 133
True 262 144

Strict False False 16 16
True 1 1

True False 80 44
True 6 6

Table 4.10: Usage of security flags for cookies by individual cookies and sites.

state and redirects to /login or /signin or similar in the other state. For some URLs,
it only redirects logged-in users, however.

4.4.3 Cookie statistics

The pipeline also collects all the cookies on each of the tested sites. We can use this
information to gather information about the cookie usage of these sites. Cookies are
essential for XS-Leaks as they are the default state-transmission method used by servers.
If the cookies are not attached to the requests induced by the attacker, the server cannot
distinguish between requests belonging to different states. In such cases, the server
will reply with the same response regardless of the user’s actual state, preventing the
successful execution of an XS-Leak.

There are three security flags for cookies: httpOnly, secure, and SameSite. The last one is
of particular interest for XS-Leaks as a setting of Lax will cause modern browsers to not
send them along with most cross-site requests except for requests caused by window.open.
A setting of Strict will instruct the browser never to send them along with cross-site
requests. For more details, we refer to [58].

In total, we analyze 6,246 cookies for 382 sites. Unfortunately, due to a server crash, we
lost the cookie information for another 21 tested websites. Table 4.10 summarizes the
cookies found according to the different security-relevant attributes. Out of these 6,246

/login
/signin

64 Chapter 4 XS-Leaks in the wild

Values Sites

Lax, Not set 103
Lax, None, Not set 83
Not set 81
None, Not set 33
Lax, None, Not set, Strict 27
Lax, Not set, Strict 22
Lax, None 10
None 9
Lax 5
Not set, Strict 5
None, Not set, Strict 2
None, Strict 1
Lax, None, Strict 1

Table 4.11: SameSite settings for cookies observed on sites.

cookies, 857 set the httpOnly flag to True, and 1,399 set the Secure flag to True. For
SameSite, we have 1,045 cookies with the Lax value, 731 with the None value, and 103
with the Strict value. Another 3,613 cookies did not set any flag.

For CSRF [60], the recommendation is to set all session cookies to Lax or better even
to Strict such that attackers cannot cause damage. For other cookies, the SameSite
attribute is sometimes not set at all, or for better cross-origin interoperability, set to
None. We highlight that even if all session cookies are set to Strict, and browsers thus
do not attach them to any cross-origin requests, XS-Leaks might still be possible due
to other cookies with less protective settings. To illustrate, imagine a website with a
dark and a light theme. The website saves the user preference in a non-session cookie
set to SameSite=“None” such that even if other websites frame the website, the user
preference is complied with. If the dark and light themes differ in the number of frames
on the page, an attacker can easily infer the state with the object-properties_framecount
method. If the default setting on the website is light and one observes the number of
frames for dark, one knows that the victim changed this setting. If the button to change
it is only accessible to logged-in users, we can even reason that the victim is logged in as
it is unlikely that they changed the value of the cookie in the developers’ console. Other
similar use cases could exist on a variety of websites.

Next, we investigate how different websites are using the SameSite setting and if they use
different values on different cookies. Table 4.11 displays all configurations of SameSite
cookies on sites found in the tests. The most common setting is that the website sets
Lax on some cookies and nothing on others (103). The next most common behavior is
that some cookies are Lax, some are None, and some are not set (83). The third place
is taken by sites not setting any SameSite flag on all cookies (81). In addition, nine

Chapter 4 XS-Leaks in the wild 65

websites set None on all cookies, and five websites set Lax on all cookies, and no website
sets Strict on all cookies. Most of the other possible combinations exist as well in varying
occurrences.

4.4.4 Vulnerable endpoints

The pipeline’s primary goal is to automatically find and confirm XS-Leaks on an extensive
range of websites. The previous sections described potential security issues on sites such
as misconfigured headers and cookies. However, such issues do not automatically mean
that a site is vulnerable to XS-Leaks. This section presents how many XS-Leaks the last
part of the pipeline, the dynamic confirmator, has found on all tested sites and analyzes
the difference between browsers, inclusion methods and leak methods.

Both state creation mechanisms together managed to login on 430 websites. Out of these,
at least 29 websites could not be crawled correctly, mainly due to TLS problems. Due to
an unfortunate hardware issue on the server, we could not save the results of the dynamic
confirmator for 67 sites. After fixing the problem and rerunning the pipeline on these
sites, the state creation failed for 21 sites, and we could not retest them. In the end, for
383 sites, at least one URL was crawled and saved in the database. Out of these sites,
352 sites had at least one potentially vulnerable URL according to the static pruning
component, and we started the dynamic confirmator to confirm the potential leaks. Out
of these, 318 sites remained after the first step with at least one URL that observed
distinguishable responses. These URLs got retested to lower the chance of false positives
due to non-state-dependent differences in the responses. After the second confirmation,
a leak URL, i.e., a combination of inclusion channel and target URL, is only considered
vulnerable if the observed property differed the same way twice. As an example, we
consider the framecount method. This method records the number of frames N for the
first test and the number M for the second test, and we denote it with (N, M). Observing
a framecount of (0, 0) for one state and (3, 4) for the other state would be considered
same way, but an observed framecount of (4, 3) for one state and (3, 4) for the other
state would not be considered as same way as both values occur for both states. After
testing the potential leak URLs a second time, the pipeline found XS-Leaks on 258 sites
on either browser. It found 215 vulnerable sites on Chrome and 230 vulnerable sites on
Firefox. 189 sites have at least one vulnerable URL in both browsers.

Vulnerability overview: Table 4.12 gives an overview of all vulnerabilities found. On
the 258 sites with at least one found vulnerability a total of 3,625 unique vulnerable
URLs and a total of 7,559 vulnerable leak URLs in either browser exist. These numbers
heavily vary between sites, browsers, inclusion methods, and leak methods. Out of the

66 Chapter 4 XS-Leaks in the wild

Group U
R
Ls

an
y
br
ow

se
r

U
R
Ls

bo
th

br
ow

se
rs

U
R
Ls

on
ly

on
e
br
ow

se
r

U
R
Ls

Fi
re
fo
x

U
R
Ls

C
hr
om

e

Si
te
s
bo

th
br
ow

se
rs

Si
te
s
on

ly
on

e
br
ow

se
r

Si
te
s
Fi
re
fo
x

Si
te
s
C
hr
om

e

all 3,625 1,638 1,987 2,976 2,287 187 71 230 215
audio 40 2 38 18 24 2 10 7 7
embed 661 8 653 623 46 6 38 35 15
embed-img 969 0 969 954 15 0 55 53 2
iframe 1,001 119 882 918 202 48 60 89 67
iframe-csp 550 116 434 470 196 39 65 85 58
img 10 4 6 6 8 2 0 2 2
link-prefetch 64 0 64 42 22 2 14 8 10
link-stylesheet 68 0 68 9 59 0 12 2 10
object 937 13 924 929 21 8 39 45 10
script 851 28 823 822 57 5 37 36 11
video 33 2 31 13 22 1 8 3 7
window.open 2,375 1,465 910 1,816 2,024 125 63 159 154
event-list 1,182 50 1,132 1,111 121 17 53 60 27
gp-securitypolicyviolation 176 6 170 165 17 5 23 23 10
gp-window-onerror 814 0 814 811 3 0 37 35 2
gp-window-postMessage 444 95 349 365 174 25 34 52 32
op-el-media-error 23 0 23 0 23 0 6 0 6
op-el-naturalWidth 10 4 6 6 8 2 0 2 2
op-frame-count 2,321 1,328 993 1,734 1,915 126 58 156 154
op-win-history-length 413 239 174 322 330 76 57 106 103
op-win-opener 52 44 8 48 48 3 0 3 3
op-win-origin 255 108 147 233 130 12 27 34 17

Table 4.12: Vulnerable URLs by inclusion methods and leak methods for browsers and
sites.

URLs any browser URLs both browsers URLs only one browser URLs Firefox URLs Chrome

mean 14.05 6.35 7.70 11.53 8.86
std 40.54 17.41 29.43 39.52 19.64
min 1.00 0.00 0.00 0.00 0.00
50% 3.00 1.00 2.00 2.00 2.00
max 560.00 136.00 424.00 560.00 136.00

Table 4.13: Summary of vulnerable URLs discovered by site.

Chapter 4 XS-Leaks in the wild 67

3,625 vulnerable URLs only 1,638 URLs were confirmed in both browsers and the other
1,987 URLs were only confirmed in one browser. Table 4.13 provides a summary of the
data for each site showing that there are large differences between sites, with many sites
only having one vulnerable URL and one site contributing 560 vulnerable URLs.

Inclusion methods and SameSite differences: Looking at the different inclusion meth-
ods, one can see that Firefox found more vulnerable URLs for most of them. In Chrome,
most methods did not work on a large set of URLs, except for window.open, making
up more than 88% of the discovered vulnerable URLs (61% in Firefox). We explain
this difference by the fact that except for window.open all inclusion methods do not
work if the state-defining cookie has the SameSite setting Lax. As shown earlier, many
cookies do not set the SameSite flag. Chrome defaults to Lax in this case, whereas
Firefox defaults to None. With the collected data, we can estimate how many sites would
not be vulnerable in Firefox if they would switch to the new default Lax and would
stop accepting None cookies that do not set the Secure flag. Every site that has zero
vulnerable URLs for all inclusion methods except window.open in Chrome but has at
least one vulnerable URL in Firefox is a likely candidate of a site that would be more
secure if Firefox would switch their default behavior. This approach produces only an
estimate as other issues such as failed session sharing only in Chrome, or different parsing
behavior can also be why a site is only vulnerable in Firefox. This approach estimated
that 60 out of 258 sites are insecure due to the SameSite inconsistencies. Subtracting
these sites from the dataset, 1,175 URLs are vulnerable in both browsers, and 1,078
URLs are vulnerable in only one browser. This result indicates that many issues arise
because the different leak methods work slightly differently in both browsers, as explored
in more depth in the previous chapter.

Some exceptions where Chrome is more vulnerable than Firefox are link-stylesheet, video,
and audio. For link-stylesheet, this is due to Chrome allowing almost any content-type
for stylesheets, whereas Firefox applies strict mime-type checking by default and only
allows text/css as a valid content-type. For video and audio, this is due to the mediaError
bug discovered in the previous chapter [71]. The image inclusion method rarely works
for both browsers, suggesting that the well-known case of images only available for
authenticated users [42, 90] is not a big issue anymore. The differences between the
browsers for the inclusion methods embed, embed-img, object, and script are particularly
large and cannot only be explained by SameSite cookies. For embed, embed-img, and
object, one reason is the fact that they behave almost identical to IFrame or image in
Chrome, whereas they behave differently in Firefox [99]. For script, one primary reason
is the CORB implementation of Chrome [19].

68 Chapter 4 XS-Leaks in the wild

Working leak methods: Next, we present the results on the leak methods. First, we
focus on the methods mainly related to window.open. The framecount method is the
best working one in both browsers with almost 2,000 URLs reported as vulnerable
each. The object-properties_window-origin method works on 255 URLs. The method
works on around 100 more URLs in Firefox. This difference is mainly because these
methods additionally often work for the inclusion method IFrame-CSP and not only
for window.open in Firefox and seldom in Chrome as can be seen in table 4.14. This
difference can be due to SameSite behavior on one hand. On the other hand, it can be
since the blocked frame replacement is same-origin in Firefox, making it similar to global-
properties_securitypolicyviolation, which is not the case in Chrome where the blocked
frame is not accessible. The object-properties_window-opener method works almost
identically in Chrome and Firefox. The object-properties_window-history-length method
works slightly more often in Chrome. The global-properties_postMessage method works
more often in Firefox, this is mainly due to SameSite cookies as it also works for the
inclusion methods IFrame, embed and object in Firefox.

Next, we focus on the methods not possible with window.open. Most of these methods
work more often in Firefox. This difference is, on the one hand, due to the different
SameSite defaults. On the other hand, it is due to differing parsing oddities and edge-case
handling in the browsers. One exception to the rule is the mediaError channel that only
works in Chrome due to the discovered bug [71]. Another recognizable difference is that
the global-properties_window.onerror method worked three times in Chrome and 811
times in Firefox. Here, the explanation cannot only be SameSite. Instead the CORB
implementation in Chrome stopped several of these leaks as it replaces JSON or HTML
bodies with empty content that does not trigger an error [19]. Several methods do not
occur in table 4.12. We decided to drop several methods from the previous chapter
that, according to the decision trees, are identical for our purposes. For example, we
only included the dimension properties object-properties_el-naturalHeight and object-
properties_el-naturalWidth in the analysis and dropped object-properties_el-Height and
object-properties_el-Width. Additionally, out of the 18 tested methods in this chapter,
the three methods object-properties_el-duration, object-properties_el-videoHeight, and
object-properties_el-videoWidth did not work a single time. This non-occurrence suggests
that it is rare for video or audio resources to only be accessible by logged-in users or that
it is hard to find such resources.

Working leak channels: The leak channel results in table 4.14 present additional results
not seen in the above data. First, we focus on the channels not using window.open as
the inclusion method. All of these methods should, in general, be more likely in Firefox

Chapter 4 XS-Leaks in the wild 69

Leak channel U
R
Ls

an
y
br
ow

se
r

U
R
Ls

bo
th

br
ow

se
rs

U
R
Ls

on
ly

on
e
br
ow

se
r

U
R
Ls

Fi
re
fo
x

U
R
Ls

C
hr
om

e

Si
te
s
bo

th
br
ow

se
rs

Si
te
s
on

ly
on

e
br
ow

se
r

Si
te
s
Fi
re
fo
x

Si
te
s
C
hr
om

e

Audio
event-list 23 2 21 18 7 2 7 7 4
op-el-media-error 20 0 20 0 20 0 5 0 5

Embed
event-list 576 2 574 574 4 1 16 16 2
gp-securitypolicyviolation 26 4 22 21 9 3 8 9 5
gp-window-postMessage 163 4 159 128 39 4 21 17 12

Embed-img
event-list 845 0 845 830 15 0 25 23 2
gp-securitypolicyviolation 55 0 55 55 0 0 10 10 0
gp-window-postMessage 181 0 181 181 0 0 31 31 0

IFrame
event-list 557 2 555 557 2 1 10 11 1
gp-securitypolicyviolation 32 4 28 29 7 3 6 8 4
gp-window-postMessage 271 14 257 209 76 10 28 33 15
op-frame-count 430 73 357 400 103 7 37 37 14
op-win-history-length 100 31 69 78 53 36 32 52 52
op-win-origin 4 1 3 4 1 1 2 3 1

IFrame-CSP
event-list 125 2 123 125 2 1 18 19 1
gp-securitypolicyviolation 120 5 115 112 13 4 17 17 8
gp-window-postMessage 166 23 143 117 72 8 25 27 14
op-frame-count 303 75 228 266 112 9 34 36 16
op-win-history-length 75 18 57 56 37 22 34 42 36
op-win-origin 100 1 99 100 1 1 15 16 1

Image
event-list 10 4 6 6 8 2 0 2 2
op-el-naturalWidth 10 4 6 6 8 2 0 2 2

Link-prefetch
event-list 64 0 64 42 22 2 14 8 10

Link-stylesheet
event-list 68 0 68 9 59 0 12 2 10

Object
event-list 846 7 839 836 17 5 22 24 8
gp-securitypolicyviolation 60 5 55 59 6 4 8 11 5
gp-window-postMessage 152 4 148 149 7 3 18 20 4

Script
event-list 815 28 787 787 56 5 31 30 11
gp-window-onerror 814 0 814 811 3 0 37 35 2

Video
event-list 15 2 13 13 4 1 4 3 3
op-el-media-error 18 0 18 0 18 0 4 0 4

Window.open
gp-window-postMessage 120 72 48 87 105 13 8 16 18
op-frame-count 2,188 1,296 892 1,619 1,865 116 59 144 147
op-win-history-length 281 188 93 227 242 19 17 30 25
op-win-opener 52 44 8 48 48 3 0 3 3
op-win-origin 158 108 50 136 130 12 14 21 17

Table 4.14: Vulnerable leak channels by browser and site.

70 Chapter 4 XS-Leaks in the wild

due to the different SameSite defaults. For some channels, the difference is particularly
striking, warranting further investigation.

The first finding is that the global-properties_securitypolicyviolation method worked
186 times for inclusion methods other than IFrame-CSP. Investigating this oddity, we
could confirm that this is due to the embedding documents specifying a CSP frame-
ancestor policy that does not allow the attack page to frame them. In such a case, the
browser throws a securitypolicyviolation event on the parent page. As this leaks cross-site
information, browsers should not throw an event on the parent page. The issue was
already discovered and fixed independently in Chrome [83] but we reported the issue to
Firefox where it is still possible to exploit [79].

As a second channel, we investigate the event-list channel. For some inclusion methods
such as audio and image, the results between Chrome and Firefox are similar and can
mainly be explained by the SameSite behavior. The inclusion methods that found the
most vulnerable URLs for event-list, are IFrame-CSP, object, embed, and embed-img.
For these inclusion methods, the two browsers behave fundamentally differently. Embed
and object behave mostly similar to IFrame in Chrome, whereas they behave vastly
differently on Firefox. Embed-img behaves similar to embed in Firefox and similar to
img in Chrome. The IFrame behavior is also not identical for both browsers. All these
differences, in addition to the differing SameSite default, result in both browsers finding
almost complete disjoint sets of URLs vulnerable. Firefox has drastically more vulnerable
URLs for these cases but still does not include all cases found in Chrome.

Next, we highlight some of the behavior of both browsers and which responses they can
distinguish. For the IFrame, object, and embed inclusion methods, both Chrome and
Firefox can distinguish responses where only one response performs a redirection using
the meta refresh tag, the refresh header, or by JavaScript code. In Firefox, embed-img
works as well. Such redirections, however, are rare in practice and only account for
two vulnerable URLs in the collected data. In Firefox, responses that only set CSP:
frame-ancestors on one response can also be distinguished by all four inclusion methods.
For IFrame one load event less is fired, for embed(-img) no event is fired at all, and
for object an error event is fired in such cases. Firefox can also distinguish responses
that have an error status-code such as 401 and responses with a success code such as
200 for object, embed, and embed-img. Firefox can also distinguish responses that set
X-Frame-Options from responses that do not set X-Frame-Options using the events fired
for object, embed, and embed-img. In Chrome, the distinction for CSP: frame-ancestors
and X-Frame-Options works as well, but only for the object inclusion. The behavior
in Chrome is unwanted as object should not leak more information as IFrame. Thus
we created another bug report [72]. The behavior in Firefox threatens more websites as

Chapter 4 XS-Leaks in the wild 71

a larger attack surface exists. However, Firefox plans to rewrite their complete object
and embed code to make it behave more like IFrame [99]. Therefore, we refrained from
opening additional bug reports until we clarified more details about the exact nature of
this issue and their planned changes. Embed-img works the same way as img in Chrome.

The global-properties_postMessage method works similarly for window.open, roughly
three times more often on Firefox for most other inclusion methods and zero times for
embed-img in Chrome.

In the end, we want to highlight one aspect of the best working method overall framecount.
For the window.open inclusion method, the leak method works for 1,619 URLs in Firefox
and 1,865 URLs in Chrome. One reason that accounts for 48 of the URLs only found
in Chrome is the decision of Chrome to not return any framecount for broken window
references instead of just returning 0 as a safe default. Window references can break for
two reasons. One reason is the setting of a Cross-Origin-Opener-Policy that cuts off the
connection, which occurred on two sites. The other reason occurs when the response
causes a download, e.g., through content-disposition=attachment, which occurred on one
site.

4.4.5 Potential issues

Every tool that automatically deals with finding vulnerabilities faces the problem of false
positives and false negatives. False negatives are due to missing methods or insufficient
coverage of the tested site. They mean the tool reports a site as invulnerable even though
it is or reports not all vulnerable URLs. False negatives are harmful as they convey a
false sense of security. However, if one knows about the limitation and does not only
rely on one tool to check for the security of a website, they do not change the fact that
the tool found real vulnerabilities. False positives, on the other hand, are a more serious
issue for a tool like the does-it-leak pipeline. First, they skew the scientific reports as
sites and URLs are reported as vulnerable that are, in fact, secure. Second, suppose
a developer uses an automatic tool to find vulnerabilities, and the tool presents many
wrong cases. In that case, the developer loses much time and loses interest in the tool,
often leading to less secure sites [93]. In the following, we try to estimate whether we
have false positives in the data and how serious of a problem it is. Then, we will discuss
the potential issue of unpredictable URLs. Finally, we will discuss the issue that the
found state differences are not necessarily between a logged-in user and an anonymous
visitor.

72 Chapter 4 XS-Leaks in the wild

False positives: We created the pipeline with the goal of not producing false positives
and sacrificed this for a higher number of false negatives. For example, every URL
reported as vulnerable has to be leaky the same way twice. Still, we cannot guarantee
that the pipeline did not report any false positives. False positives can have two main
reasons. First, two repetitions were not enough, and due to bad luck, an actual random
response is reported as vulnerable. Second the definition of same is not strict enough.
Investigating false positives in the pipeline is challenging for three main issues. First,
the number of reported vulnerabilities is too high to check manually. Second, as seen
previously, it can be that the necessary state creation component does not work anymore.
Third, even if one manually attempts to confirm the vulnerable URLs and does not
manage to confirm them, it does not automatically mean that the reported URL is a
false positive. Instead, it could also be that the response to the URL has changed as we
are attacking a moving target, and websites change how they behave every day.

We came up with a different method to see if a reported vulnerability might be a false
positive and which methods are more prone to them. We investigate the observed results
for every leak channel to compare whether the same result was observed for the logged-in
state and for the anonymous state or if we only observed every single value for one state.
Applying this method to the complete dataset is not helpful as the negative case for one
site can be positive for the other. Table 4.9g shows that, for example, some sites redirect
logged-in users, whereas other sites redirect anonymous visitors. Getting the data per
site is not without issues either, as one site could, for example, redirect logged-in users
on one URL and anonymous visitors on another URL. Still, this gives some insight into
potentially problematic methods as well as into methods that appear stable.

Table 4.15 summaries the observation pairs for each inclusion channel by browser. Several
methods such as event-set are dropped from this analysis as they behave almost exactly
as other methods. An observation pair consists of the values observed for both states.
We aggregate the pairs per site for the table, i.e., we count the same value pair twice if it
occurs on two different sites. The first column shows the number of unique pairs, and
the second column shows the number of URLs for which we observed these pairs. The
other two columns show the number of pairs and URLs left if we only consider the pairs
observed in both permutations for a site. There are 2,267 value pairs observed, and only
168 of these occur in both permutations on a site.

Most inclusion channels have zero potential false positives, according to this estimation.
The framecount method, however, has a high potential number in both browsers. In addi-
tion, the object-properties_window-history-length has a high potential number in Chrome.
Other methods that have some potential false positives are global-properties_postMes-
sage, mediaError in Chrome, and event-list. It is important to note that these numbers

Chapter 4 XS-Leaks in the wild 73

Complete Data Potential FPs
Pairs URLs Pairs URLs

Inclusion method Leak method Browser

audio event_list Chrome 4 7 0 0
Firefox 8 18 2 2

op_el_media_error Chrome 6 20 2 2
embed event_list Chrome 2 4 0 0

Firefox 17 574 2 3
gp_securitypolicyviolation Chrome 5 9 0 0

Firefox 9 21 0 0
gp_window_postMessage Chrome 37 39 2 2

Firefox 28 128 0 0
embed-img event_list Chrome 3 15 2 12

Firefox 24 830 0 0
gp_securitypolicyviolation Firefox 10 55 0 0
gp_window_postMessage Firefox 57 181 0 0

iframe event_list Chrome 1 2 0 0
Firefox 11 557 0 0

gp_securitypolicyviolation Chrome 4 7 0 0
Firefox 8 29 0 0

gp_window_postMessage Chrome 46 76 0 0
Firefox 57 209 0 0

op_frame_count Chrome 18 103 0 0
Firefox 94 400 2 2

op_win_history_length Chrome 52 53 0 0
Firefox 59 78 2 2

op_win_origin Chrome 1 1 0 0
Firefox 3 4 0 0

iframe-csp event_list Chrome 1 2 0 0
Firefox 20 125 2 2

gp_securitypolicyviolation Chrome 8 13 0 0
Firefox 100 112 0 0

gp_window_postMessage Chrome 41 72 0 0
Firefox 52 117 2 2

op_frame_count Chrome 25 112 2 6
Firefox 62 266 2 2

op_win_history_length Chrome 36 37 0 0
Firefox 43 56 2 2

op_win_origin Chrome 1 1 0 0
Firefox 17 100 2 2

img event_list Chrome 3 8 2 5
Firefox 2 6 0 0

op_el_naturalWidth Chrome 7 8 2 2
Firefox 5 6 0 0

link-prefetch event_list Chrome 10 22 0 0
Firefox 8 42 0 0

link-stylesheet event_list Chrome 11 59 2 25
Firefox 2 9 0 0

object event_list Chrome 9 17 0 0
Firefox 26 836 2 2

gp_securitypolicyviolation Chrome 5 6 0 0
Firefox 11 59 0 0

gp_window_postMessage Chrome 6 7 0 0
Firefox 32 149 0 0

script event_list Chrome 12 56 2 22
Firefox 31 787 2 7

gp_window_onerror Chrome 2 3 0 0
Firefox 38 811 6 18

video event_list Chrome 3 4 0 0
Firefox 3 13 0 0

op_el_media_error Chrome 5 18 2 8
window.open gp_window_postMessage Chrome 39 105 6 15

Firefox 31 87 2 5
op_frame_count Chrome 419 1,850 50 163

Firefox 388 1,596 40 138
op_win_history_length Chrome 30 242 6 113

Firefox 37 227 4 6
op_win_opener Chrome 3 48 0 0

Firefox 3 48 0 0
op_win_origin Chrome 19 130 4 8

Firefox 22 136 2 3

Table 4.15: Number of unique observation pairs by site for each channel for the complete
data and the potential false positives.

74 Chapter 4 XS-Leaks in the wild

are only estimated as the observed duplicate values belong to distinct URLs. It might be
that the different URLs leak in opposite ways, e.g., a site might redirect a logged-in user
to /account when trying to access /login and redirect an anonymous visitor to /login

when trying to access /account. When it is indeed a false positive, it can have several
reasons. For example, a not strict enough definition of same way, not enough repetitions
due to server-site randomness, or that the method is not stable enough in general, or the
attack page does not wait long enough for stable results.

Studying the different methods in more detail gives some more insights into these
problematic cases. For framecount, there seem to be several sites that have URLs with
0 frames for visitors and N frames for logged-in users, and the other way round. This
observation suggests that these are not false positives, but different parts of the website
behave differently for both states. At the same time, there are several sites where it is
unclear. For future experiments, we suggest increasing the retry number to three for the
framecount and postMessage method. In addition, if both states receive messages, we
could use a distance function and disregard too similar messages for the cost of potentially
including additional false negatives. Finally, for the methods based on window.open in
Chrome, it seems that the timeouts were not high enough in some cases, even though we
vastly increased them from the last chapter.

Unguessable URLs: Many websites use random-looking and unguessable URLs to
protect resources. This method of unguessable URLs is, for example, often used for
image sharing sites such as Google photos [10]. These secret URLs can be shared among
all users in the service, or every user can have their secret URL. In addition, these URLs
can be protected by another means of authentication. This concept was studied in depth
by Staicu and Pradel. In their paper, they have shown that many sites are vulnerable
to so-called leaky images attacks [90]. For XS-Leaks, all cases where the secret URL is
the only protection measure cannot be leaky as regardless of the requestor’s state, the
server returns the same response. Cases where the secret URL is shared between all
users and authentication is required result in working XS-Leaks. The last case of interest
is where the URLs are secret per user, and the server additionally checks authentication.
In this case, only one user has access to the resource using the specific URL. The server
will verify if the URL and the authentication details fit together and otherwise block
the access. This kind of defense is deployed on several sites, including Facebook [90]
and does work for every inclusion method, not only images. Suppose users that are not
the URL owner and anonymous visitors receive the same response when accessing it.
In that case, the URL cannot be exploited as an XS-Leak as attackers can only attack
themselves using these URLs.

/account
/login
/login
/account

Chapter 4 XS-Leaks in the wild 75

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90+
Length in characters

0

1000

2000

3000

4000

5000

6000

7000

8000

Co
un

t
Path
Query

Figure 4.2: URL path and query length histogram of all reported vulnerable URLs.

Due to the way the pipeline is structured, we only created one user per tested website,
searched for potentially vulnerable URLs using this account, and then distinguished
the created user from an anonymous visitor. This procedure means we were attacking
ourselves, and we included such non-exploitable URLs in the results presented in the
previous section. It is infeasible to check all found vulnerable URLs regarding this matter
and would require testing every URL with another account. Still, we can estimate how
big of an issue this is for the presented results. An essential factor of this defense is
that the URL needs to have enough entropy, such that attackers cannot predict or brute
force the URLs needed to attack users other than themselves based on the URLs they
observe for their accounts. The shorter a URL is, the less likely it is that the URL is
not user-specific and unpredictable. However, the other way round is not necessarily
the case. While testing several very long URLs, we have observed many public URLs
that specify a long search query and are exploitable. We did not find a single URL that
uses the introduced defense during a manual check, but the sample size was too small
to generalize the results. Instead, we want to highlight that many vulnerable URLs are
short, meaning they do not have enough entropy to use this defense.

Figure 4.2 presents the distribution of path and query lengths of all reported vulnerable
URLs. The median path length is 21 characters, and the median query length is 20
characters. This distribution shows that even if all URLs would use session-specific URLs,
many would still be exploitable as they are too short to do so securely.

76 Chapter 4 XS-Leaks in the wild

Leaked state difference: The user-specific URLs described above mean a URL is not
exploitable by an attacker. However, they are still working XS-Leaks that can distinguish
between the user we created and everybody else. This fact relates to the issue mentioned
at the beginning of this chapter: we do not know which state difference information we
are leaking. Investigating the leak channel data per site can partly solve this for some
sites. For example, we noticed that the framecount for the logged-in state was always
zero for one site, whereas it varied for the anonymous state. After manual inspection, we
could confirm that the website always redirected logged-in users to a welcome survey.
On other sites, we expect other similar behaviors. Such behaviors mean we do not only
distinguish between logged-in users and anonymous visitors but often between users of a
specific group, e.g., users created today, users not having filled the welcome form, and
users not in this group.

Chapter 5

Discussion

In the previous chapters, we have shown that most XS-Leaks still work in major browsers
and that many websites are still vulnerable. We created a pipeline to automatically scan
websites for XS-Leaks using fake accounts and reported real vulnerabilities. With these
facts in mind, we have to discuss the ethical considerations of this work. Additionally,
we have to be honest about the limitations of this work. For example, we did not study
all XS-Leak methods. Just because we did not find a vulnerability on a website does not
mean that the website is invulnerable. Neither does a found vulnerability automatically
mean that real users are facing actual risks. We also have compare this work to other
research, showing what is new and different and what was already known. Lastly, we
would like to make a call to action to get rid of this threat as soon and as effectively as
possible.

5.1 Ethics

With this research, we want to make the web a more secure place and do not want to put
users at risk or disturb the functionality of the tested websites. We crawled for URLs
with only one browser per site. In contrast, the dynamic confirmation of potentially
vulnerable URLs has had a maximum of four concurrent browsers testing a site, one
per state in both Firefox and Chrome. As we chose the tested sites from the top 20,000
websites and configured relatively high waiting times for the state inference on a site,
the requests should not have influenced the service level of any tested website. We
have, however, encountered several 429 too many requests responses, and as a future
improvement, we should honor these responses and slow down testing of such sites. Also,
we only tried to leak the state difference between the created users and a controlled

77

78 Chapter 5 Discussion

visitor. We did not collect any data on real users nor tried to break or steal information
from the websites themselves.

A different aspect lies in the creation of the user accounts necessary to perform XS-Leaks
vulnerability scanning. Many websites require acknowledging their terms of service
(TOS) before creating an account or logging in. Naturally, we could not read any of
these TOS, and the creation pipeline just accepted anything. These TOS often only
allow real human users to create accounts and sometimes ban bots and vulnerability
scanning of their site. We note that the pipeline also does not take anti-bot notices
such as robots.txt into account and actively tries to prevent being detected as a bot to
estimate the extent of the issue for real users more accurately. From specific interest are
the regulations of Google and Facebook, which we used for both Gmail access and single
sign-on (SSO). These organizations prohibit bot accounts, and the state creation part
of the pipeline is breaking several of their TOS. We did not perform any active actions
with the created accounts, except for accessing additional websites using SSO, and only
created one account per website. We argue that this research benefit outweighs breaking
TOS, and testing as many websites as possible will result in more accurate results. As
the created accounts are primarily passive and only one per website, they should not
influence any of the factors why websites included the bans of bots in their TOS in the
first place.

Another aspect lies in the reported vulnerabilities in this thesis and the release of a
tool to find XS-Leaks on any website. All bugs found in browsers were reported to the
vendors using their official, secure channels as they could potentially put thousands of
users at risk. We, however, refrained from reporting the found XS-Leaks to the affected
websites. Reporting the found vulnerabilities, sometimes several dozens per site, would
require significant effort. It would require manually confirming every reported leak and
an educated guess of which state difference is leaked. It also requires finding a suitable
reporting point and time for the reporting and answering of follow-up questions. Previous
research showed that reporting is a complex task, and only a small amount of websites
get fixed quickly following a report [91, 13]. In addition, we did not evaluate what actual
state difference is leaked and how it could be abused. Also, websites change every day,
meaning many vulnerable endpoints might not be vulnerable anymore. All these reasons
resulted in the decision that the cost of notifying every affected website stands in no
comparison to the benefits. To further lower the chance of putting users and websites at
risk, we decided not to report the vulnerable URLs in this thesis.

The tool released can be used to find XS-Leaks on websites automatically. However, the
user needs to provide their state creation scripts as the automatic state creation part is
not publicly available. Therefore, it prevents the automatic testing of a high number of

Chapter 5 Discussion 79

websites. In the end, we believe that the tool is more beneficial for website developers
improving their site and other security researchers than for attackers trying to use it for
malicious purposes.

5.2 Limitations

As with every scientific work, this work comes with its own set of limitations. Some
of them are engineering problems, and we would be able to overcome them with more
time and resources. However, other limitations are more fundamental due to the chosen
approaches or limited inherently. We first present the limitations of the first framework
described in chapter 3 which are mainly related to the chosen scope. Then, we present the
limitations of the second pipeline described in chapter 4 which are mainly false negatives
and false positives.

5.2.1 XS-Leaks in browsers

The pipeline created to answer the first research question has three main shortcomings:
the number of tested browsers and versions, the arbitrary response space, and the set of
tested XS-Leak methods. In the following, we explain each point in more detail.

Set of browsers: The first limitation is that we only tested three major browsers in
one version each. Testing other browsers, especially ones designed for privacy, such as
Tor and Brave, or mobile browsers, could provide additional insights. Studying the exact
leak method behavior over versions can also give insights into how XS-Leaks change over
time and find incomplete bug fixes. However, there is some trouble in setting up the
testing infrastructure. One needs a Selenium 4 driver to use the existing code and not for
every browser and version a selenium 4 driver exists. However, nothing fundamentally
hinders the addition of additional browsers and versions, and we could add them with
more time and resources.

Adequacy of tested response space: The second limitation is the question of the
appropriateness of the tested response space. We only tested a limited number of
properties with a limited number of values each. We used headers known to influence
XS-Leaks and one positive and one negative value each. Using this approach, we tried to
cover as much of the entire space of relevant paths in the browser’s code while keeping
the number of necessary tests reasonable. We did not consider all headers that influence
XS-Leaks. Notably, we did not include the Content-Security-Policy header that currently

80 Chapter 5 Discussion

can influence XS-Leaks. We also did not study a variety of possible values that could
lead to all kinds of edge case behavior. For example, one browser might autocorrect an
invalid value, whereas another chooses to ignore it.

This problem cannot be solved by just adding resources. One can easily increase the
tested response space and add a single additional property or value. However, the growth
is exponential, and there are infinitely many possible values for headers as they are strings.
One more suited approach could be taking the source code of browsers into account and
covering all possible paths in the relevant code. Another approach could be sampling
responses from the wild and using a response space constructed out of recorded values
to only test combinations that occur in the wild. A third approach would be to start
with the created decision trees and only add new values in interesting paths instead of
going for the complete combination of properties. If, for example, the decision trees show
that responses with CORP will never render images, one does not have to add the new
values to the responses with CORP. Still, we think that we covered most of the relevant
response space. Additionally, the results in chapter 4 show that the limited response
space did not introduce many false negatives, and the created does-it-leak pipeline could
find many vulnerable URLs.

Missing methods: The third limitation is the exclusion of several known XS-Leak
methods, mainly concerning timing and caching. Unfortunately, the results in this thesis
do not say anything about whether these methods still work and which response groups
they can distinguish. Adding some of these excluded methods to the pipeline is not
easy. They would need severe adjustments and are often influenced by other factors not
considered in the current response space, such as the server-processing time.

The timing-based ones need several requests to create accurate timing measurements
and establish a timing baseline. These many requests add a burden on the tested sites
and the testing infrastructure. In addition, they leak either server-processing time or
client-processing time related to resource size. Both factors are currently not represented
in the response space and it is unlikely that many of the currently included properties
influence the timing. The caching-based methods additionally need a reliable method
to purge the cache. Unfortunately, most cache purging methods rely on browser bugs
or race conditions, making them unreliable and labor-intensive. Another method only
possible in a test environment would be to restart the browser between every request.
In the current docker-based framework, this generates massive overhead, and native
browsers should be used instead. In addition, the introduction of site isolated cache in
modern browsers should mitigate most caching-based methods as different sites do not
share a cache anymore [87].

Chapter 5 Discussion 81

Some XS-Leak methods based on CSS behavior need user interaction. For example, they
require a user to click on a button. Users are trained to click on certain elements, such
as cookie confirmation buttons. Therefore, these methods can work [57, 50]. However,
if the user clicks nowhere or on the wrong space, this might cause incorrect results. In
addition, these methods are not automatically exploitable without problems as one needs
to find out where the bot has to click. Such automatic clicks are not possible in the
current tooling. They would require piping the screen output into a computer vision
model and then sending back the coordinates to Selenium to click.

The last removed group consists of methods relying on features not supported in modern
browsers anymore, such as AppCache attacks [54]. We could add these methods by
testing in a browser version where the feature is still supported. However, studying
them does not result in impactful findings as most users use reasonably recent browser
versions [11]. Also, it is unlikely that the leaks will get reintroduced as the features were
removed entirely and will likely not come back.

5.2.2 XS-Leaks in the wild

The pipeline created to answer the second question also has its own set of shortcomings.
First, it inherits all shortcomings from above as it builds upon the results from the first
question and shares part of the testing infrastructure. Second, the leak channels global-
properties_hasOwnProperty_script and global-properties_getComputedStyle_stylesheet
are not properly included as they require high additional engineering effort and have
already been studied by others [55]. Third, it also inherits the limitations from other
tools it builds on, such as cookiehunter [28]. In the following, we will discuss some of the
shortcomings and potential improvements for the future.

State-creation and stateful crawling problems: We could not test many websites as
the pipeline failed to register and log in on these sites successfully. In the future, we hope
to have a more efficient tool to automatically perform this task or have a standardized
way of websites offering test accounts usable by security researchers to scan their websites
for vulnerabilities. A more powerful tool would at least need the capability to dodge
bot detection measures better and fill captchas. Currently, web developers can manually
create a login script for their site or even pass cookies directly to the scanning part of
the pipeline. Manual approaches, however, do not scale for security researchers trying to
get an overview of the state of the web.

We could not successfully test all websites where the login worked. Reasons include that
no session sharing via cookies was possible or the session was invalidated, e.g., by clicking

82 Chapter 5 Discussion

on a logout button or because the website detected that several users use the same
session simultaneously. Other websites detected the crawler as a bot, had insufficient
certificates, or used rate-limiting, preventing us from successfully examining them. Some
of these problems could be addressed in the future by better monitoring and slower or
no parallel requests. Unfortunately, due to insufficient logging and data loss related to
a server crash, we cannot precisely determine how often which explanation caused the
failure of the crawl or test, which we want to improve in the future.

False positives: We created the pipeline with the explicit goal of producing no false
positives. Still, false positives can exist in the collected data due to server-side randomness
and other issues. With the false positive estimates in the previous chapter, we could show
that the number of false positives is probably relatively small. Still, we suggest testing
methods with higher variability, such as global-properties_postMessage and framecount,
more than twice per URL in the future. A problem with increasing the confirmation
number is increased time, and that it could introduce additional false negatives.

False negatives: False negatives are another problem. We only crawl a limited area
of each website and only test the set of supported methods described. Consequently,
only because we found no vulnerable URLs on a tested website does not mean that the
website is not vulnerable. We suggest that developers change the crawling parameters or
directly provide the crawler with a list of all available URLs to achieve higher coverage.
If time is not of concern, the pruning module can also be deactivated to test every URL
for all inclusion methods.

Future improvements: The primary issue of the problems mentioned above is not that
they exist but that we cannot correctly quantify them. One problem is that we are
studying a moving target. Due to this, it is not possible to replicate the results or
add additional tests after the data analysis step. For example, the websites might have
changed already, the login might not work anymore, or server-side randomness interferes.

There are two distinct approaches to how one could address this meta-problem in the
future. The first approach is to save all traffic during the dynamic confirmation step.
This additional traffic data should make it retroactively possible to study many of the
above questions and replay the responses for manual confirmation. In addition, this
data should give more insights into SameSite cookies, defenses such as Fetch metadata,
and general server-side randomness. Another approach would be to use the does-it-leak
pipeline in a more controlled environment that disables most sources of randomness,
such as A/B testing and load balancers. One idea could be to test self-hosted versions of

Chapter 5 Discussion 83

commonly used web applications such as the ones from Bitnami [9] instead of scanning
popular websites. As the source code is available for these applications, most of the
above issues can be detected or mitigated. Additionally, insecure defaults in commonly
used libraries could be detected and reported to the library maintainers.

5.3 Related work

This thesis builds upon a variety of works ranging from the discoveries of the used
XS-Leak methods, over studies of cross-browser behavior and measurement studies on
the web, to works that are studying the state of XS-Leaks in browsers or the wild. In
the following, we introduce the most relevant related work and compare the findings of
this thesis with previous results.

Detection techniques: The general problem of XS-Leaks has been known since the
early 2000s when Felten and Schneider described access detection attacks exploiting cache
behavior via a timing side-channel [31]. In 2006, Hansen reported that the error event on
img-tags could be used to determine if a user is authenticated. This method works because
some sites serve HTML error pages or redirect unauthenticated users trying to access
protected images [42]. Later, similar leaks on other tags (e.g., script or video) and other
events (e.g., onloadeddata) were discovered [41, 12, 40]. In 2012, Grossman described that
it is possible to leverage the detection of properties of dynamic JavaScript files (XSSI)
and CSS files, as well as the SOP-conform access on the frame.length property of IFrames
for login detection [40]. In 2013, Homakov discovered that Content-Security-Policys,
invented to mitigate XSS-Attacks, can be used to detect redirects which can be used to
detect the OAuth status of a user [43]. Recently, all these different detection techniques
and attack scenarios have been grouped under the label XS-Leaks in a wiki [88]. The
creators gather information on all the different leak techniques and defenses on the
continuously evolving wiki.

In this work, we have shown that most methods still work today. Additionally, we provide
the first comprehensive data on the prevalence of different methods. We found that some
methods work more often than expected, whereas others, such as authenticated images,
rarely occur in the wild. These findings mean that the web landscape has changed, or
the old estimates were invalid from the beginning as they were primarily anecdotal and
not based on web scan data.

Cross-browser behavior: It is a well-known fact that different browsers behave differ-
ently. These inconsistencies bring many web developers to use cross-browser testing tools

84 Chapter 5 Discussion

to ensure their website works as intended on different browsers such as selenium [85].
In 2017, Schwenk et al. showed that cross-browser inconsistencies do not only concern
design functionality, but also critical web security mechanisms such as the Same-Origin-
Policy [84]. They developed many tests to check which DOM accesses are possible
cross-origin and discovered that the behavior differed in 23% of their tests. They also
found one new XS-Leak method only possible in Edge and Internet Explorer of that
time.

We show that even though almost all methods work in all tested browsers, there is a
significant difference between the main types of browsers. We discovered that every
single leak method behaves slightly or drastically different in Chrome and Firefox. These
findings align with previous work and suggest that browser vendors should enhance their
cooperation to make the web a safer place.

Real world measurements: Large-scale measurements are necessary to show that XS-
Leaks are a real threat to the web. Testing XS-Leaks is more complicated than many
other web security issues as one must first create state information on the tested sites.
Usually, this is done by registering accounts and then testing the site one time in the
logged-in state and one time in the anonymous state. These registration and login efforts
can either be manual or automatic.

In 2015, Lekies et al. manually created accounts on 150 top-ranked websites to search for
dynamic JavaScript (XSSI) [55]. They found that user state information was leakable
on 40 of the tested sites due to dynamic JavaScript. In 2019, Sanchez-Rola et al. came
around the account creation and login problem by studying access detection instead [82].
They searched for server-side processing time differences depending on whether the page
was visited before or not by timing requests with and without cookies attached. Out
of the 10,000 websites they tested, they found around half of them vulnerable to their
attack. In 2020, Drakonakis et al. solved part of the register and login problem by
creating a tool that can do this automatically [28]. They managed to register and log in
to 25,242 domains fully automatically. However, they used it to study a different attack,
namely cookie-based account hijacking. The recent work of Jonker et al. attempted only
to automate the login process and falls back to crowd-sourced user credentials for the
registration step [47].

We mainly used the cookiehunter tool [28] to create state information in this thesis.
Unfortunately, due to various changes on the web, the tool does not work as well as
advertised anymore. Still, we managed to register and login on 412 sites with it and
additionally used manually created accounts for 18 sites. We believe that better and
more reliable tools are necessary for future studies of authenticated areas of websites.

Chapter 5 Discussion 85

State of XS-Leaks: In 2020, Sudhodanan et al. were the first to test many known
XS-Leak methods in three mainstream browsers. In addition, they manually created
accounts for 58 tested websites and found at least one leaky URL on all of them [92].
In 2021, Goethem et al. proposed a new taxonomy for XS-Leaks. They also tested for
several methods which versions of Firefox and Chrome were vulnerable. In addition, they
studied different defense mechanisms regarding which leak method they work against [39].

These works only tested a subset of the described methods in their automatic tests as
they had similar problems in automating the other methods. Sudhodanan et al. tested
several responses for every leak channel. However, the considered response space was
small. They attempted to generalize the observations into two most general responses, A
and B. Then, they introduced the concept of leak classes and presented 40 leak classes,
out of which only 14 worked in all tested browsers. Many of these leak classes belong to
the same leak channel and describe different paths or subtrees of the decision trees in
the representation used in this thesis. The need for many leak classes relates to their
incomplete generalizations. For example, not every response fits either response A or
B, and it is unclear what the observation of such a response would be. In such cases,
they often created several leak classes for non- or partially overlapping response sets
or ignored other responses entirely. Also, they overgeneralized several properties and
assumed that all 2XX, 3XX, and 4XX responses behave the same. In this thesis, we
showed that different status-codes from the same group behave quite differently. This
thesis makes it more transparent that usually, a method not only works in one browser
or another but that the sets of responses that a leak channel can distinguish differ for
each browser. This thesis also shows that a static pruning step is feasible and efficient
if the generalizations are adequate. Additionally, we provide insights into the actual
response patterns observed in the wild and how often different methods work. Finally,
we also release the created tools making it possible for other researchers to scan sites for
XS-Leaks and browser vendors to investigate edge case behavior.

Goethem et al. only used one example response pair for all of the attacks they tested.
Several of these attacks are different response pairs for the same leak channel. For at least
one attack: server redirect (CSP violation), they have chosen a pair that only worked in
Chrome and concluded that the attack does not work in Firefox. In this thesis, we have
shown that the global-properties_securitypolicyviolation event works in Firefox and that
it is essential to test a larger response space for every leak channel as the exact behavior
significantly differs between browsers. These differences are often bugs in browsers. For
many response pairs in the wild, these bugs are decisive for whether they are vulnerable
or not. In addition, only focusing on single pairs often leads to incomplete bug fixes.
To give evidence, we have discovered several bypasses of previously fixed leak channels
where only a single pair regression test case existed.

86 Chapter 5 Discussion

5.4 Defenses and call to action

XS-Leaks are preventable. Many defenses exist, and if used correctly, it is impossible to
infer user information cross-site using the techniques considered in this thesis. However,
currently, many websites are vulnerable, and browser vendors should do more to prevent
XS-Leak by default.

We have seen that many leaks found in chapter 4 are only possible due to inconsistently
set security headers. Therefore, we strongly advise every web developer who uses security
headers such as XCTO, XFO, CORP, COOP, and similar to set the same value regardless
of the state of the request. We could not concretely study the effect of Fetch metadata,
but servers can also use this information to prevent XS-Leaks, and we encourage them to
use it. Adjusting both states to have the same outcome generally works but does not scale
well and often misses some URLs. Another approach could be to add noise to responses,
e.g., a randomly changing amount of invisible IFrames makes the framecount method
hard or impossible to use reliably. Browser vendors could also use a noisy approach for
opened documents without a reference anymore, e.g., due to COOP, instead of behaving
like about:blank or raising a security exception.

SameSite cookies are one of the most effective and straightforward defenses against
XS-Leaks. A setting of Lax prevents most XS-Leaks without breaking many websites. We
highlight that not only the session cookies need to be protected but all cookies carrying
any state information. In addition, websites should set the COOP header to prevent
leaks based on window.open. We have observed many leaky URLs in Firefox that are not
attackable in Chrome due to differing SameSite defaults. Therefore, we appeal to Firefox
to switch to the new recommended default of Lax and not accepting None without the
Secure flag as soon as possible.

In addition, we urge browser vendors and specification bodies to unify edge case behavior.
If one only considers the intersection where both tested browsers work, the attack
surface for XS-Leaks is heavily reduced. Luckily, unifying edge case behavior should not
introduce any missing functionality as the individual quirks responsible for the URLs
only vulnerable in one browser do not exist in the other browser.

Chapter 6

Conclusion

This thesis aimed to study XS-Leaks in more depth to give a better insight into the state
of XS-Leaks on the web and in browsers. Furthermore, we wanted to use these insights
to estimate more accurately how big of an issue XS-Leaks are for the web ecosystem.

Looking back at the first research question, “Which groups of responses can different
leak methods distinguish in different browsers?”, we state that most methods still leak
information in major browsers. Many leaks follow directly from the specifications and
cannot be easily solved without changing how the web works. However, the exact
conditions of each leak method differ for every single method between Firefox and
Chromium-based browsers. To provide more insight, we created decision trees for every
leak channel in every browser, that illustrate in an easy-to-understand manner which
groups of responses lead to which outcomes. Using the decision trees, we were able to
discover several bugs in browsers and find other considerable differences between them.
We have released the decision trees and an application to check which methods can
distinguish two given responses to foster future research and more secure websites and
browsers.

The second question, “Which XS-Leak methods work how often on websites in the wild
in different browsers?” is challenging to answer due to the complex task of automatically
creating state information on websites and confirming that a URL leaks information.
Still, we managed to test for XS-Leaks on 352 sites and found 258 sites vulnerable in at
least one browser. Some methods such as object-properties_element-height work only
rarely and behave almost identically in both browsers. However, other methods such as
object-properties_framecount are widespread and behave considerably different in both
browsers. In total, only around half of the vulnerable endpoints affect both browsers.
This significant difference is partly due to the tested browsers’ different SameSite and

87

88 Chapter 6 Conclusion

Fetch metadata behavior, but also due to the high variability in the handling of edge
cases discovered while answering the first question.

In summary, we conclude that XS-Leaks exist on most websites and are a considerable
threat for web users on a large share of the web in all browsers. However, there is hope
for an XS-Leak free future. We could not find vulnerable URLs on every tested website
and found evidence that modern defenses can effectively prevent XS-Leaks when deployed
correctly. However, it is difficult for web developers to deploy these defenses correctly.
Additionally, we discovered that a large part of the attack surface is due to edge case
behavior that browser vendors can fix without changing the fundamentals of the web.
Therefore, we suggest that browser vendors take additional steps to introduce more
secure defaults and unify their edge case behavior to increase the security and privacy
of users. For the future, we want to observe the evolution of browsers regarding XS-
Leaks continuously. Regression bugs are common, and every new feature can introduce
new leaks or stop leaks from working. Additionally, a better method to create state
information on websites is necessary to give more accurate estimates on the state of the
web ecosystem regarding issues such as XS-Leaks.

Bibliography

[1] G. Acar. 1450853 - (CVE-2020-15666) MediaError Message Property Leaks Cross-
Origin Response Status. 2018. url: https://bugzilla.mozilla.org/show_bug

.cgi?id=1450853 (visited on 08/23/2021).

[2] G. Acar. 828265 - MediaError Message Property Leaks Cross-Origin Response
Status. 2018. url: https://bugs.chromium.org/p/chromium/issues/detail

?id=828265 (visited on 08/23/2021).

[3] G. Acar, D. Y. Huang, F. Li, A. Narayanan, and N. Feamster. “Web-Based Attacks
to Discover and Control Local IoT Devices”. In: Proceedings of the 2018 Workshop
on IoT Security and Privacy. SIGCOMM ’18: ACM SIGCOMM 2018 Conference.
Budapest Hungary: ACM, Aug. 7, 2018, pp. 29–35. doi: 10.1145/3229565.3229

568.

[4] D. Akhawe, A. Barth, P. E. Lam, J. Mitchell, and D. Song. “Towards a Formal
Foundation of Web Security”. In: 2010 23rd IEEE Computer Security Foundations
Symposium. 2010 23rd IEEE Computer Security Foundations Symposium. July
2010, pp. 290–304. doi: 10.1109/CSF.2010.27.

[5] L. Anforowicz. More CORB-Protected MIME Types - Adding Protected Types
One-by-One. · Issue #860 · Whatwg/Fetch. GitHub. 2019. url: https://gith

ub.com/whatwg/fetch/issues/860 (visited on 08/25/2021).

[6] Apache Tika. url: https://tika.apache.org/ (visited on 10/12/2021).

[7] A. Barth. RFC6265. Apr. 2011. url: https://httpwg.org/specs/rfc6265.html

(visited on 09/23/2021).

[8] T. J. Berners-Lee. Information Management: A Proposal. 1989.

[9] Bitnami. url: https://bitnami.com/ (visited on 10/23/2021).

[10] R. Brandom. “Google Photos and the Unguessable URL”. In: The Verge (June 23,
2015). url: https://www.theverge.com/2015/6/23/8830977/google-photos-

security-public-url-privacy-protected (visited on 10/16/2021).

89

https://bugzilla.mozilla.org/show_bug.cgi?id=1450853
https://bugzilla.mozilla.org/show_bug.cgi?id=1450853
https://bugs.chromium.org/p/chromium/issues/detail?id=828265
https://bugs.chromium.org/p/chromium/issues/detail?id=828265
https://doi.org/10.1145/3229565.3229568
https://doi.org/10.1145/3229565.3229568
https://doi.org/10.1109/CSF.2010.27
https://github.com/whatwg/fetch/issues/860
https://github.com/whatwg/fetch/issues/860
https://tika.apache.org/
https://httpwg.org/specs/rfc6265.html
https://bitnami.com/
https://www.theverge.com/2015/6/23/8830977/google-photos-security-public-url-privacy-protected
https://www.theverge.com/2015/6/23/8830977/google-photos-security-public-url-privacy-protected

90 Bibliography

[11] Browser Version Market Share Worldwide. StatCounter Global Stats. url: h

ttps://gs.statcounter.com/browser-version-market-share (visited on
08/24/2021).

[12] M. Cardwell. Abusing HTTP Status Codes to Expose Private Information. Grepular.
2011. url: https://www.grepular.com/Abusing_HTTP_Status_Codes_to_Exp

ose_Private_Information (visited on 03/08/2021).

[13] O. Cetin, C. Ganan, M. Korczynski, and M. van Eeten. “Make Notifications Great
Again: Learning How to Notify in the Age of Large-Scale Vulnerability Scanning”.
In: Workshop on the Economics of Information Security (WEIS). 2017.

[14] Complete List of Web Browsers. url: https://www.webdevelopersnotes.com

/browsers-list (visited on 09/24/2021).

[15] Content Security Policy Header. url: https://w3c.github.io/webappsec-csp

/#csp-header (visited on 09/23/2021).

[16] Content Security Policy Paths and Redirects. url: https://www.w3.org/TR/CSP1

1/#source-list-paths-and-redirects (visited on 08/23/2021).

[17] Cookies Default to SameSite=Lax - Chrome Platform Status. url: https://www

.chromestatus.com/feature/5088147346030592 (visited on 08/19/2021).

[18] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors. Mitmproxy: A Free and
Open Source Interactive HTTPS Proxy. Version 7.0.2. 2021. url: https://mitmp

roxy.org/.

[19] Cross-Origin Read Blocking (CORB). url: https://chromium.googlesource.c

om/chromium/src/+/master/services/network/cross_origin_read_blocki

ng_explainer.md (visited on 04/28/2021).

[20] Cross-Origin-Embedder-Policy. url: https://html.spec.whatwg.org/multipa

ge/origin.html#coep (visited on 09/23/2021).

[21] Cross-Origin-Opener-Policy. url: https://html.spec.whatwg.org/multipage

/origin.html#cross-origin-opener-policies (visited on 09/23/2021).

[22] DataReportal. Digital 2021: Global Overview Report. DataReportal – Global
Digital Insights. 2021. url: https://datareportal.com/reports/digital-20

21-global-overview-report (visited on 09/28/2021).

[23] Desktop Browser Market Share Worldwide July 2021. StatCounter Global Stats.
url: https://gs.statcounter.com/browser-market-share/desktop/worldw

ide/ (visited on 09/24/2021).

[24] Desktop Browser Version Market Share Worldwide. StatCounter Global Stats.
url: https://gs.statcounter.com/browser-version-market-share/deskto

p/worldwide/ (visited on 09/24/2021).

https://gs.statcounter.com/browser-version-market-share
https://gs.statcounter.com/browser-version-market-share
https://www.grepular.com/Abusing_HTTP_Status_Codes_to_Expose_Private_Information
https://www.grepular.com/Abusing_HTTP_Status_Codes_to_Expose_Private_Information
https://www.webdevelopersnotes.com/browsers-list
https://www.webdevelopersnotes.com/browsers-list
https://w3c.github.io/webappsec-csp/#csp-header
https://w3c.github.io/webappsec-csp/#csp-header
https://www.w3.org/TR/CSP11/#source-list-paths-and-redirects
https://www.w3.org/TR/CSP11/#source-list-paths-and-redirects
https://www.chromestatus.com/feature/5088147346030592
https://www.chromestatus.com/feature/5088147346030592
https://mitmproxy.org/
https://mitmproxy.org/
https://chromium.googlesource.com/chromium/src/+/master/services/network/cross_origin_read_blocking_explainer.md
https://chromium.googlesource.com/chromium/src/+/master/services/network/cross_origin_read_blocking_explainer.md
https://chromium.googlesource.com/chromium/src/+/master/services/network/cross_origin_read_blocking_explainer.md
https://html.spec.whatwg.org/multipage/origin.html#coep
https://html.spec.whatwg.org/multipage/origin.html#coep
https://html.spec.whatwg.org/multipage/origin.html#cross-origin-opener-policies
https://html.spec.whatwg.org/multipage/origin.html#cross-origin-opener-policies
https://datareportal.com/reports/digital-2021-global-overview-report
https://datareportal.com/reports/digital-2021-global-overview-report
https://gs.statcounter.com/browser-market-share/desktop/worldwide/
https://gs.statcounter.com/browser-market-share/desktop/worldwide/
https://gs.statcounter.com/browser-version-market-share/desktop/worldwide/
https://gs.statcounter.com/browser-version-market-share/desktop/worldwide/

Bibliography 91

[25] Distributed Random Forest (DRF). url: https://docs.h2o.ai/h2o/latest-st

able/h2o-docs/data-science/drf.html (visited on 08/23/2021).

[26] Django. Version 3.2.4. 2021. url: https://www.djangoproject.com/ (visited
on 08/23/2021).

[27] Docker. url: https://www.docker.com/ (visited on 09/24/2021).

[28] K. Drakonakis, S. Ioannidis, and J. Polakis. “The Cookie Hunter: Automated Black-
Box Auditing for Web Authentication and Authorization Flaws”. In: Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communications
Security. Virtual Event USA: ACM, Oct. 30, 2020, pp. 1953–1970. doi: 10.1145

/3372297.3417869.

[29] C. Dresen, F. Ising, D. Poddebniak, T. Kappert, T. Holz, and S. Schinzel. “COR-
SICA: Cross-Origin Web Service Identification”. In: Proceedings of the 15th ACM
Asia Conference on Computer and Communications Security. ASIA CCS ’20. New
York, NY, USA: Association for Computing Machinery, Oct. 5, 2020, pp. 409–419.
doi: 10.1145/3320269.3372196.

[30] T. Duebendorfer and S. Frei. “Why Silent Updates Boost Security”. In: TIK, ETH
Zurich, Tech. Rep 302 (2009), p. 98.

[31] E. W. Felten and M. A. Schneider. “Timing Attacks on Web Privacy”. In: Pro-
ceedings of the 7th ACM Conference on Computer and Communications Security.
CCS ’00. New York, NY, USA: Association for Computing Machinery, Nov. 1,
2000, pp. 25–32. doi: 10.1145/352600.352606.

[32] Fetch Metadata Request Headers. url: https://w3c.github.io/webappsec-fe

tch-metadata/#sec-fetch-site-header (visited on 08/25/2021).

[33] Fetch Standard CORP. url: https://fetch.spec.whatwg.org/#cross-origin

-resource-policy-header (visited on 08/25/2021).

[34] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. RFC2068:
Hypertext Transfer Protocol–HTTP/1.1. RFC Editor, 1997.

[35] R. Fielding and J. Reschke. RFC7231. June 2014. url: https://httpwg.org/sp

ecs/rfc7231.html (visited on 10/17/2021).

[36] File. url: https://man7.org/linux/man-pages/man1/file.1.html (visited on
10/12/2021).

[37] P. J. Franks, P. Hallam-Baker, L. C. Stewart, J. L. Hostetler, S. Lawrence,
P. J. Leach, and A. Luotonen. HTTP Authentication: Basic and Digest Access
Authentication. Request for Comments RFC 2617. Internet Engineering Task
Force, June 1999. 34 pp. doi: 10.17487/RFC2617.

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html
https://www.djangoproject.com/
https://www.docker.com/
https://doi.org/10.1145/3372297.3417869
https://doi.org/10.1145/3372297.3417869
https://doi.org/10.1145/3320269.3372196
https://doi.org/10.1145/352600.352606
https://w3c.github.io/webappsec-fetch-metadata/#sec-fetch-site-header
https://w3c.github.io/webappsec-fetch-metadata/#sec-fetch-site-header
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-header
https://fetch.spec.whatwg.org/#cross-origin-resource-policy-header
https://httpwg.org/specs/rfc7231.html
https://httpwg.org/specs/rfc7231.html
https://man7.org/linux/man-pages/man1/file.1.html
https://doi.org/10.17487/RFC2617

92 Bibliography

[38] N. Gelernter and A. Herzberg. “Cross-Site Search Attacks”. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.
CCS’15: The 22nd ACM Conference on Computer and Communications Security.
Denver Colorado USA: ACM, Oct. 12, 2015, pp. 1394–1405. doi: 10.1145/28101

03.2813688.

[39] T. V. Goethem, G. Franken, I. Sanchez-Rola, D. Dworken, and W. Joosen. “Un-
derstanding Cross-Site Leaks and Defenses”. In: 2021 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). 2021, p. 16. url: https://se

cweb.work/papers/2021/vangoethem2021leaks.pdf.

[40] J. Grossman. I Know What Websites You Are Logged-In To (Login-Detection via
CSRF). WhiteHat Security. 2012. url: https://web.archive.org/web/201603

17054027/https://www.whitehatsec.com/blog/i-know-what-websites-you-

are-logged-in-to-login-detection-via-csrf/ (visited on 03/08/2021).

[41] J. Grossman. Login Detection, Whose Problem Is It? 2008. url: https://blo

g.jeremiahgrossman.com/2008/03/login-detection-whose-problem-is-it

.html (visited on 03/08/2021).

[42] R. Hansen. Detecting States of Authentication With Protected Images. ha.ckers.
2006. url: https://web.archive.org/web/20150417095319/http://ha.cker

s.org/blog/20061108/detecting-states-of-authentication-with-protec

ted-images/ (visited on 03/08/2021).

[43] E. Homakov. 313737 - Disclose Domain of Redirect Destination Taking Adventadge
of CSP. 2013. url: https://bugs.chromium.org/p/chromium/issues/detail

?id=313737 (visited on 03/08/2021).

[44] E. Homakov. Using Content-Security-Policy for Evil. Jan. 13, 2014. url: https:

//homakov.blogspot.com/2014/01/using-content-security-policy-for-e

vil.html (visited on 03/09/2021).

[45] HTML Standard. url: https://html.spec.whatwg.org/multipage/ (visited
on 09/23/2021).

[46] Hypertext Transfer Protocol (HTTP) Status Code Registry. url: https://www.ia

na.org/assignments/http-status-codes/http-status-codes.xhtml (visited
on 08/24/2021).

[47] H. Jonker, S. Karsch, B. Krumnow, and M. Sleegers. “Shepherd: A Generic
Approach to Automating Website Login”. In: Proceedings 2020 Workshop on
Measurements, Attacks, and Defenses for the Web. Workshop on Measurements,
Attacks, and Defenses for the Web. San Diego, CA: Internet Society, 2020. doi:
10.14722/madweb.2020.23008.

https://doi.org/10.1145/2810103.2813688
https://doi.org/10.1145/2810103.2813688
https://secweb.work/papers/2021/vangoethem2021leaks.pdf
https://secweb.work/papers/2021/vangoethem2021leaks.pdf
https://web.archive.org/web/20160317054027/https://www.whitehatsec.com/blog/i-know-what-websites-you-are-logged-in-to-login-detection-via-csrf/
https://web.archive.org/web/20160317054027/https://www.whitehatsec.com/blog/i-know-what-websites-you-are-logged-in-to-login-detection-via-csrf/
https://web.archive.org/web/20160317054027/https://www.whitehatsec.com/blog/i-know-what-websites-you-are-logged-in-to-login-detection-via-csrf/
https://blog.jeremiahgrossman.com/2008/03/login-detection-whose-problem-is-it.html
https://blog.jeremiahgrossman.com/2008/03/login-detection-whose-problem-is-it.html
https://blog.jeremiahgrossman.com/2008/03/login-detection-whose-problem-is-it.html
https://web.archive.org/web/20150417095319/http://ha.ckers.org/blog/20061108/detecting-states-of-authentication-with-protected-images/
https://web.archive.org/web/20150417095319/http://ha.ckers.org/blog/20061108/detecting-states-of-authentication-with-protected-images/
https://web.archive.org/web/20150417095319/http://ha.ckers.org/blog/20061108/detecting-states-of-authentication-with-protected-images/
https://bugs.chromium.org/p/chromium/issues/detail?id=313737
https://bugs.chromium.org/p/chromium/issues/detail?id=313737
https://homakov.blogspot.com/2014/01/using-content-security-policy-for-evil.html
https://homakov.blogspot.com/2014/01/using-content-security-policy-for-evil.html
https://homakov.blogspot.com/2014/01/using-content-security-policy-for-evil.html
https://html.spec.whatwg.org/multipage/
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://doi.org/10.14722/madweb.2020.23008

Bibliography 93

[48] C. Kerschbaumer. Mitigating MIME Confusion Attacks in Firefox. Mozilla Security
Blog. 2016. url: https://blog.mozilla.org/security/2016/08/26/mitigat

ing-mime-confusion-attacks-in-firefox (visited on 08/19/2021).

[49] E. Kitamura. Gaining Security and Privacy by Partitioning the Cache. 2020. url:
https://developers.google.com/web/updates/2020/10/http-cache-parti

tioning (visited on 08/19/2021).

[50] S. Kobes. 712246 - Security: CSS :Visited with Mix-Blend-Mode Can Leak Browser
History. 2017. url: https://bugs.chromium.org/p/chromium/issues/detail

?id=712246 (visited on 08/20/2021).

[51] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M.
Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom. “Spectre Attacks:
Exploiting Speculative Execution”. In: 2019 IEEE Symposium on Security and
Privacy (SP). 2019 IEEE Symposium on Security and Privacy (SP). May 2019,
pp. 1–19. doi: 10.1109/SP.2019.00002.

[52] J. Kokatsu. 835465 - X-Frame-Options and CSP Frame-Ancestors Is Ignored
When Location Header Is Present. 2018. url: https://bugs.chromium.org/p/c

hromium/issues/detail?id=835465 (visited on 08/23/2021).

[53] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczynski, and W.
Joosen. “Tranco: A Research-Oriented Top Sites Ranking Hardened Against
Manipulation”. In: Proceedings 2019 Network and Distributed System Security
Symposium. Network and Distributed System Security Symposium. San Diego,
CA: Internet Society, 2019. doi: 10.14722/ndss.2019.23386.

[54] S. Lee, H. Kim, and J. Kim. “Identifying Cross-Origin Resource Status Using
Application Cache”. In: Proceedings 2015 Network and Distributed System Security
Symposium. Network and Distributed System Security Symposium. San Diego,
CA: Internet Society, 2015. doi: 10.14722/ndss.2015.23027.

[55] S. Lekies, B. Stock, M. Wentzel, and M. Johns. “The Unexpected Dangers of
Dynamic JavaScript”. In: 24th USENIX Security Symposium (USENIX Security
15). Washington, D.C.: USENIX Association, Aug. 2015, pp. 723–735. url: htt

ps://www.usenix.org/conference/usenixsecurity15/technical-sessions

/presentation/lekies.

[56] R. Masas. Patched Facebook Vulnerability Could Have Exposed Private Information
About You and Your Friends. Imperva. 2018. url: https://www.imperva.com/b

log/facebook-privacy-bug/ (visited on 03/08/2021).

[57] R. Masas. The Human Side Channel. 2021. url: https://ronmasas.com/posts

/the-human-side-channel (visited on 08/20/2021).

https://blog.mozilla.org/security/2016/08/26/mitigating-mime-confusion-attacks-in-firefox
https://blog.mozilla.org/security/2016/08/26/mitigating-mime-confusion-attacks-in-firefox
https://developers.google.com/web/updates/2020/10/http-cache-partitioning
https://developers.google.com/web/updates/2020/10/http-cache-partitioning
https://bugs.chromium.org/p/chromium/issues/detail?id=712246
https://bugs.chromium.org/p/chromium/issues/detail?id=712246
https://doi.org/10.1109/SP.2019.00002
https://bugs.chromium.org/p/chromium/issues/detail?id=835465
https://bugs.chromium.org/p/chromium/issues/detail?id=835465
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.14722/ndss.2015.23027
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/lekies
https://www.imperva.com/blog/facebook-privacy-bug/
https://www.imperva.com/blog/facebook-privacy-bug/
https://ronmasas.com/posts/the-human-side-channel
https://ronmasas.com/posts/the-human-side-channel

94 Bibliography

[58] R. Merewood. SameSite Cookies Explained. web.dev. 2019. url: https://web.d

ev/samesite-cookies-explained/ (visited on 10/14/2021).

[59] S. Morgan. Cybercrime To Cost The World $10.5 Trillion Annually By 2025.
Cybercrime Magazine. Nov. 10, 2020. url: https://cybersecurityventures.co

m/cybercrime-damage-costs-10-trillion-by-2025/ (visited on 10/18/2021).

[60] Mozilla. Cross-Site Request Forgery (CSRF). url: https://developer.mozilla

.org/en-US/docs/Web/Security/Types_of_attacks#cross-site_request_f

orgery_csrf (visited on 09/23/2021).

[61] Mozilla. Cross-Site Scripting (XSS). url: https://developer.mozilla.org/e

n-US/docs/Web/Security/Types_of_attacks#cross-site_scripting_xss

(visited on 09/23/2021).

[62] Mozilla. Mozilla Firefox Release Notes. 2021. url: https://www.mozilla.org/e

n-US/firefox/releases/ (visited on 09/24/2021).

[63] Mozilla. Same-Origin Policy. url: https://developer.mozilla.org/en-US/do

cs/Web/Security/Same-origin_policy (visited on 08/19/2021).

[64] Mozilla. State Partitioning. 2021. url: https://developer.mozilla.org/

en-US/docs/Mozilla/Firefox/Privacy/State_Partitioning (visited on
04/28/2021).

[65] Mozilla. Window: Load Event. url: https://developer.mozilla.org/en-US/d

ocs/Web/API/Window/load_event (visited on 08/24/2021).

[66] J. Müller. Inconsistency between Headless and Headful Browser · Issue #3940 ·
Puppeteer/Puppeteer. GitHub. 2019. url: https://github.com/puppeteer/pup

peteer/issues/3940 (visited on 08/25/2021).

[67] Origin Header. url: https : / / fetch . spec . whatwg . org / #origin - header

(visited on 10/17/2021).

[68] Path Traversal. url: https://owasp.org/www-community/attacks/Path_Trav

ersal (visited on 10/18/2021).

[69] Puppeteer. Version 10.2.0. 2021. url: https://pptr.dev/ (visited on 08/19/2021).

[70] J. Rautenstrauch. 1251534 - Security: CSP Matching Algorithm Does Not Ignore
Paths for Client-Side Redirections. 2021. url: https://bugs.chromium.org/p

/chromium/issues/detail?id=1251534 (visited on 09/24/2021).

[71] J. Rautenstrauch. 1251921 - Security: MediaError Messages Still Leak Cross-
Origin Informatio. 2021. url: https://bugs.chromium.org/p/chromium/issu

es/detail?id=1251921 (visited on 09/24/2021).

https://web.dev/samesite-cookies-explained/
https://web.dev/samesite-cookies-explained/
https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-by-2025/
https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-by-2025/
https://developer.mozilla.org/en-US/docs/Web/Security/Types_of_attacks#cross-site_request_forgery_csrf
https://developer.mozilla.org/en-US/docs/Web/Security/Types_of_attacks#cross-site_request_forgery_csrf
https://developer.mozilla.org/en-US/docs/Web/Security/Types_of_attacks#cross-site_request_forgery_csrf
https://developer.mozilla.org/en-US/docs/Web/Security/Types_of_attacks#cross-site_scripting_xss
https://developer.mozilla.org/en-US/docs/Web/Security/Types_of_attacks#cross-site_scripting_xss
https://www.mozilla.org/en-US/firefox/releases/
https://www.mozilla.org/en-US/firefox/releases/
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/State_Partitioning
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox/Privacy/State_Partitioning
https://developer.mozilla.org/en-US/docs/Web/API/Window/load_event
https://developer.mozilla.org/en-US/docs/Web/API/Window/load_event
https://github.com/puppeteer/puppeteer/issues/3940
https://github.com/puppeteer/puppeteer/issues/3940
https://fetch.spec.whatwg.org/#origin-header
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-community/attacks/Path_Traversal
https://pptr.dev/
https://bugs.chromium.org/p/chromium/issues/detail?id=1251534
https://bugs.chromium.org/p/chromium/issues/detail?id=1251534
https://bugs.chromium.org/p/chromium/issues/detail?id=1251921
https://bugs.chromium.org/p/chromium/issues/detail?id=1251921

Bibliography 95

[72] J. Rautenstrauch. 1260366 - Security: X-Frame-Options and CSP: Frame-Ancestor
Information Leaks Cross-Origin Using Object Tag. 2021. url: https://bugs.chr

omium.org/p/chromium/issues/detail?id=1260366#makechanges (visited on
10/15/2021).

[73] J. Rautenstrauch. 1731614 - MediaError Message Property Leaks Information on
Cross-Origin Same-Site Pages. 2021. url: https://bugzilla.mozilla.org/sho

w_bug.cgi?id=1731614 (visited on 09/24/2021).

[74] J. Rautenstrauch. 1732012 - X-Frame-Options Is Ignored on Redirection Status-
Codes (without a Location Set). 2021. url: https://bugzilla.mozilla.org/sh

ow_bug.cgi?id=1732012 (visited on 09/24/2021).

[75] J. Rautenstrauch. 1732069 - Sec-Fetch-Site Inconsistent on Localhost/IPs. 2021.
url: https://bugzilla.mozilla.org/show_bug.cgi?id=1732069 (visited on
09/24/2021).

[76] J. Rautenstrauch. 1732106 - Cross-Origin-Resource-Policy Incorrectly Applied on
Object and Embed Tags. 2021. url: https://bugzilla.mozilla.org/show_bug

.cgi?id=1732106 (visited on 09/24/2021).

[77] J. Rautenstrauch. 1732141 - Request Loads Forever If Code Is 101 or 304 and
Ct=application/Pdf. 2021. url: https://bugzilla.mozilla.org/show_bug.cg

i?id=1732141 (visited on 09/24/2021).

[78] J. Rautenstrauch. 1732199 - Infinite Reload of 201, 203, 204 Responses. 2021.
url: https://bugzilla.mozilla.org/show_bug.cgi?id=1732199 (visited on
09/24/2021).

[79] J. Rautenstrauch. 1735856 - Securitypolicyviolation Leaks Cross-Origin Informa-
tion for Frame-Ancestors Violations. 2021. url: https://bugzilla.mozilla.or

g/show_bug.cgi?id=1735856 (visited on 10/15/2021).

[80] D. Ross and T. Gondrom. HTTP Header Field X-Frame-Options. Request for
Comments RFC 7034. Internet Engineering Task Force, Oct. 2013. 14 pp. doi:
10.17487/RFC7034.

[81] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock. “Complex Security
Policy? A Longitudinal Analysis of Deployed Content Security Policies”. In:
Proceedings 2020 Network and Distributed System Security Symposium. Network
and Distributed System Security Symposium. San Diego, CA: Internet Society,
2020. doi: 10.14722/ndss.2020.23046.

https://bugs.chromium.org/p/chromium/issues/detail?id=1260366#makechanges
https://bugs.chromium.org/p/chromium/issues/detail?id=1260366#makechanges
https://bugzilla.mozilla.org/show_bug.cgi?id=1731614
https://bugzilla.mozilla.org/show_bug.cgi?id=1731614
https://bugzilla.mozilla.org/show_bug.cgi?id=1732012
https://bugzilla.mozilla.org/show_bug.cgi?id=1732012
https://bugzilla.mozilla.org/show_bug.cgi?id=1732069
https://bugzilla.mozilla.org/show_bug.cgi?id=1732106
https://bugzilla.mozilla.org/show_bug.cgi?id=1732106
https://bugzilla.mozilla.org/show_bug.cgi?id=1732141
https://bugzilla.mozilla.org/show_bug.cgi?id=1732141
https://bugzilla.mozilla.org/show_bug.cgi?id=1732199
https://bugzilla.mozilla.org/show_bug.cgi?id=1735856
https://bugzilla.mozilla.org/show_bug.cgi?id=1735856
https://doi.org/10.17487/RFC7034
https://doi.org/10.14722/ndss.2020.23046

96 Bibliography

[82] I. Sanchez-Rola, D. Balzarotti, and I. Santos. “BakingTimer: Privacy Analysis
of Server-Side Request Processing Time”. In: Proceedings of the 35th Annual
Computer Security Applications Conference. ACSAC ’19: 2019 Annual Computer
Security Applications Conference. San Juan Puerto Rico USA: ACM, Dec. 9, 2019,
pp. 478–488. doi: 10.1145/3359789.3359803.

[83] A. Sartori. 1186611 - Securitypolicyviolation Event Leaks Cross-Origin Information
for Frame-Ancestors Violations. 2021. url: https://bugs.chromium.org/p/c

hromium/issues/detail?id=1186611&q=frame-ancestors&can=1 (visited on
10/15/2021).

[84] J. Schwenk, M. Niemietz, and C. Mainka. “Same-Origin Policy: Evaluation in
Modern Browsers”. In: 26th USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, Aug. 2017, pp. 713–727. url: https://ww

w.usenix.org/conference/usenixsecurity17/technical-sessions/presen

tation/schwenk.

[85] Selenium. Version 4. 2021. url: https : / / www . selenium . dev/ (visited on
08/19/2021).

[86] Selenium Grid. Version 4. 2021. url: https://www.selenium.dev/documentati

on/en/grid/ (visited on 04/15/2021).

[87] Site Isolation. url: https://www.chromium.org/Home/chromium-security/si

te-isolation (visited on 10/17/2021).

[88] M. Sousa, terjanq, R. Clapis, D. Dworken, NDevTK, 1lastBr3ath, Brasco, rick.titor,
C. Fredrickson, and jub0bs. XS-Leaks Wiki. 2020. url: https://xsleaks.dev/

(visited on 03/08/2021).

[89] SQL Injection. url: https://owasp.org/www-community/attacks/SQL_Injec

tion (visited on 10/18/2021).

[90] C.-A. Staicu and M. Pradel. “Leaky Images: Targeted Privacy Attacks in the
Web”. In: 28th USENIX Security Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 923–939. url: https://www.usenix.o

rg/conference/usenixsecurity19/presentation/staicu.

[91] B. Stock, G. Pellegrino, F. Li, M. Backes, and C. Rossow. “Didn’t You Hear Me?
- Towards More Successful Web Vulnerability Notifications”. In: Proceedings 2018
Network and Distributed System Security Symposium. Network and Distributed
System Security Symposium. San Diego, CA: Internet Society, 2018. doi: 10.147

22/ndss.2018.23171.

https://doi.org/10.1145/3359789.3359803
https://bugs.chromium.org/p/chromium/issues/detail?id=1186611&q=frame-ancestors&can=1
https://bugs.chromium.org/p/chromium/issues/detail?id=1186611&q=frame-ancestors&can=1
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schwenk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schwenk
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schwenk
https://www.selenium.dev/
https://www.selenium.dev/documentation/en/grid/
https://www.selenium.dev/documentation/en/grid/
https://www.chromium.org/Home/chromium-security/site-isolation
https://www.chromium.org/Home/chromium-security/site-isolation
https://xsleaks.dev/
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection
https://www.usenix.org/conference/usenixsecurity19/presentation/staicu
https://www.usenix.org/conference/usenixsecurity19/presentation/staicu
https://doi.org/10.14722/ndss.2018.23171
https://doi.org/10.14722/ndss.2018.23171

Bibliography 97

[92] A. Sudhodanan, S. Khodayari, and J. Caballero. “Cross-Origin State Inference
(COSI) Attacks: Leaking Web Site States through XS-Leaks”. In: Proceedings 2020
Network and Distributed System Security Symposium. Network and Distributed
System Security Symposium. San Diego, CA: Internet Society, 2020. doi: 10.147

22/ndss.2020.24278.

[93] L. Suto. “Analyzing the Accuracy and Time Costs of Web Application Security
Scanners”. In: San Francisco, February (2010).

[94] terjanq. Mass XS-Search Using Cache Attack. 2019. url: https://terjanq.gith

ub.io/Bug-Bounty/Google/cache-attack-06jd2d2mz2r0/index.html (visited
on 10/01/2021).

[95] The Tor Project. url: https://torproject.org (visited on 09/24/2021).

[96] A. Tolfsen. CONTROL Key Chords Not Working to Open New Tabs and Windows
· Issue #786 · Mozilla/Geckodriver. GitHub. 2017. url: https://github.c

om/mozilla/geckodriver/issues/786#issuecomment-321046966 (visited on
08/23/2021).

[97] uWSGI. Version 2.0.19. 2020. url: https://uwsgi-docs.readthedocs.io/en

/latest/ (visited on 08/23/2021).

[98] T. Van Goethem, W. Joosen, and N. Nikiforakis. “The Clock Is Still Ticking:
Timing Attacks in the Modern Web”. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. CCS’15: The 22nd ACM
Conference on Computer and Communications Security. Denver Colorado USA:
ACM, Oct. 12, 2015, pp. 1382–1393. doi: 10.1145/2810103.2813632.

[99] A. van Kesteren. 1595491 - Make <embed> and <object> Behave More like
<iframe>. 2019. url: https://bugzilla.mozilla.org/show_bug.cgi?id=159

5491 (visited on 09/24/2021).

[100] WebDriver Standard. 2021. url: https://www.w3.org/TR/webdriver/#securi

ty (visited on 08/25/2021).

[101] What Is a VPN? - Virtual Private Network. Cisco. url: https://www.cisco.c

om/c/en/us/products/security/vpn-endpoint-security-clients/what-is-

vpn.html (visited on 09/24/2021).

[102] WHATWG. Fetch Standard CORB. url: https://fetch.spec.whatwg.org/#c

orb (visited on 08/19/2021).

[103] X-Content-Type Options. X-Content-Tpye-Options. url: https://fetch.spec.w

hatwg.org/#x-content-type-options-header (visited on 09/23/2021).

https://doi.org/10.14722/ndss.2020.24278
https://doi.org/10.14722/ndss.2020.24278
https://terjanq.github.io/Bug-Bounty/Google/cache-attack-06jd2d2mz2r0/index.html
https://terjanq.github.io/Bug-Bounty/Google/cache-attack-06jd2d2mz2r0/index.html
https://torproject.org
https://github.com/mozilla/geckodriver/issues/786#issuecomment-321046966
https://github.com/mozilla/geckodriver/issues/786#issuecomment-321046966
https://uwsgi-docs.readthedocs.io/en/latest/
https://uwsgi-docs.readthedocs.io/en/latest/
https://doi.org/10.1145/2810103.2813632
https://bugzilla.mozilla.org/show_bug.cgi?id=1595491
https://bugzilla.mozilla.org/show_bug.cgi?id=1595491
https://www.w3.org/TR/webdriver/#security
https://www.w3.org/TR/webdriver/#security
https://www.cisco.com/c/en/us/products/security/vpn-endpoint-security-clients/what-is-vpn.html
https://www.cisco.com/c/en/us/products/security/vpn-endpoint-security-clients/what-is-vpn.html
https://www.cisco.com/c/en/us/products/security/vpn-endpoint-security-clients/what-is-vpn.html
https://fetch.spec.whatwg.org/#corb
https://fetch.spec.whatwg.org/#corb
https://fetch.spec.whatwg.org/#x-content-type-options-header
https://fetch.spec.whatwg.org/#x-content-type-options-header

98 Bibliography

[104] Y. Zhou and D. Evans. “SSOScan: Automated Testing of Web Applications for
Single Sign-On Vulnerabilities”. In: 23rd USENIX Security Symposium (USENIX
Security 14). San Diego, CA: USENIX Association, Aug. 2014, pp. 495–510. url:
https://www.usenix.org/conference/usenixsecurity14/technical-sessi

ons/presentation/zhou.

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/zhou
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/zhou

Appendix A

Inclusion methods and leak methods

Inclusion methods Table A.1 lists all inclusion methods considered in this thesis with
example inclusion code. We omitted the event callbacks for clarity.

Inclusion method Inclusion code

script <script id=’test’ src=URL></script>
link-stylesheet <link id=’test’ href=URL rel=stylesheet></link>
link-prefetch <link id=’test’ href=URL rel=prefetch></link>
img
iframe <iframe id=’test’ src=URL></iframe>
video <video id=’test’ src=URL></video>
audio <audio id=’test’ src=URL></audio>
object <object id=’test’ data=URL></object>
embed <embed id=’test’ src=URL></embed>
embed-img <embed id=’test’ src=URL type=image/jpg></embed>
window.open win = window.open(URL)
iframe-csp <meta http-equiv=”Content-Security-Policy”

content=”default-src ’self’ ’unsafe-inline’ URL”>
<iframe id=’test’ src=URL></iframe>

Table A.1: List of inclusion methods considered in this thesis.

Leak methods The leak methods either work by observing the events fired (EF), by
accessing a property on a tag element el or a window element win (OP), or by defining a
callback function on the global window object or reading a global property (GP). The
following code shows how to get access to the tag element el, the window element win,
which events we considered and what css_test is.

var el = document.getElementById("test");

var win = el.contentWindow; // or win = window.open(URL)

I

II Appendix A Inclusion methods and leak methods

var events = ["error", "load", "loadedmetadata", "stalled", "suspend"];

// element that the stylesheet applies to

var css_test = document.getElementById("css_test");

Table A.2 lists all leak methods tested in this thesis together with a summary of how
each method works. The methods defining functions observe that the function was called
together with the calling parameters. Many of the methods accessing properties on win
test whether the element is accessible (often null) or if the access throws a security error.
The other methods record the value of the property.

Leak method Leak description

event_list list of events fired
event_set set of events fired
load_count number of load events fired
op_frame_count win.length
op_win_window win.window
op_win_CSS2Properties win.CSS2Properties
op_win_origin win.origin
op_win_opener win.opener
op_win_history_length win.location.replace(’about:blank’);

win.history.length
op_el_height el.height
op_el_width el.width
op_el_naturalHeight el.naturalHeight
op_el_naturalWidth el.naturalWidth
op_el_videoWidth el.videoWidth
op_el_videoHeight el.videoHeight
op_el_duration el.duration
op_el_networkState el.networkState
op_el_readyState el.readyState
op_el_buffered el.buffered
op_el_paused el.paused
op_el_seekable el.seekable
op_el_sheet el.sheet
op_el_media_error el.error
op_el_contentDocument el.contentDocument
gp_window_onerror window.onerror = function()
gp_window_onblur window.onblur = function()
gp_window_postMessage window.addEventListener(’message’, funcction())
gp_window_getComputedStyle window.getComputedStyle(css_test).getPropertyValue(’color’)
gp_window_hasOwnProperty window.hasOwnProperty(’a’)
gp_download_bar_height_bin start = window.innerHeight;

load();
bar = start - window.innerHeight

gp_securitypolicyviolation window.addEventListener(’securitypolicyviolation’, function())

Table A.2: List of leak methods considered in this thesis.

Appendix B

Online materials and browser
settings

Online materials All code used and created for this thesis can be accessed online.
In addition to the code, the material contains all created decision trees. The code is
distributed over the following three git repositories:

• https://github.com/JannisBush/xs-leaks-browser-web

– Main repository

– All code for R1 and the test browser framework.

– Most parts for R2/does-it-leak pipeline except for the stateful crawler and the
cookiehunter option of the state generator. The code in this repository can be
used standalone to test own websites.

– All analysis code and output including all created decision trees and tables
used in this thesis.

• https://projects.cispa.saarland/c01jara/cookiehunter

– State generator

– Modified version of cookiehunter for registration and login.

• https://projects.cispa.saarland/c01jara/node-crawler

– Stateful crawler

– Modified version of node-crawler to crawl websites with cookies.

III

https://github.com/JannisBush/xs-leaks-browser-web
https://projects.cispa.saarland/c01jara/cookiehunter
https://projects.cispa.saarland/c01jara/node-crawler

IV Appendix B Online materials and browser settings

Browser setting details

• Settings and versions for R1:

– Selenium Grid image used: https://github.com/SeleniumHQ/docker-sel

enium/releases/tag/4.0.0-beta-3-20210426

– Browser versions: Chrome 90.0.4430.85, Edge 91.0.864.1, Firefox: 88.0

– Selenium driver: 4.0.0b3, Python version: 3.9.2

– Timeouts: page load 1s, page execute 2s (for window.open retest: 4s, additional
delay time after load 150ms, (for window.open and iframe 1.5 * 150ms),
maximum number of URLs before browser restart: 500 (for window.open
retest: 100)

• Settings and versions for R2:

– State generator (cookiehunter): Chrome 92.0.4515.131 headfull with xvfb,
Tranco date: 2021-08-05, maximum time per try: 1800s, maximum tries per
site: 2.

– Stateful crawler (node-crawler): Chromium 92.0.4512.0 headless with stealth
plugin, maximum depth of crawl: 3, maximum URLs per site: 100, maximum
URLs before browser restart: 10, maximum number of retries per URL: 2,
page load timeout: 20s, execution time timeout: 5s.

– Does-it-leak pipeline dynamic confirmator: browsers: same as R1, page load
timeout: 20s, execution time timeout: 10s, additional delay time: 2s, maximum
number of URLs before browser restart: 100, maximum number of retries per
URL: 2.

https://github.com/SeleniumHQ/docker-selenium/releases/tag/4.0.0-beta-3-20210426
https://github.com/SeleniumHQ/docker-selenium/releases/tag/4.0.0-beta-3-20210426

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 General web technologies
	2.2 XS-Leak attack overview
	2.3 Browser automation

	3 XS-Leaks in browsers
	3.1 Scope
	3.1.1 Tested browsers
	3.1.2 Tested leak methods
	3.1.3 Tested responses

	3.2 Test browser framework
	3.2.1 Echo application
	3.2.2 Attack-page generator
	3.2.3 Browser automation
	3.2.4 Leak channel generalizer

	3.3 Test browser framework evaluation
	3.3.1 Timing, timeouts and impossible results
	3.3.2 Reliability evaluation

	3.4 Leak channel results
	3.4.1 Browser inconsistencies
	3.4.2 Working leak channels and trees
	3.4.3 Test responses application
	3.4.4 Security relevant bugs

	4 XS-Leaks in the wild
	4.1 Scope
	4.1.1 Tested websites and crawl settings
	4.1.2 Considered state information
	4.1.3 Considered leak channels and browsers

	4.2 Does-it-leak pipeline
	4.2.1 State generator
	4.2.2 Stateful crawler
	4.2.3 Static pruner
	4.2.4 Dynamic confirmator

	4.3 Pipeline Evaluation
	4.3.1 State creator
	4.3.2 Stateful crawler
	4.3.3 Static pruner

	4.4 Results
	4.4.1 Headers and responses
	4.4.2 Response pairs
	4.4.3 Cookie statistics
	4.4.4 Vulnerable endpoints
	4.4.5 Potential issues

	5 Discussion
	5.1 Ethics
	5.2 Limitations
	5.2.1 XS-Leaks in browsers
	5.2.2 XS-Leaks in the wild

	5.3 Related work
	5.4 Defenses and call to action

	6 Conclusion
	Bibliography
	A Inclusion methods and leak methods
	B Online materials and browser settings

