
Saarland University
Department of Computer Science

Master’s Thesis

Parameterized Repair of Guarded Protocols for

Liveness Properties

submitted by
Tom Simon Baumeister

submitted on
October 13th, 2022

Supervisor
PD Dr.-Ing. Swen Jacobs

Reviewers
PD Dr.-Ing. Swen Jacobs

Prof. Bernd Finkbeiner, Ph.D.

Eidesstattliche Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have
not used any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen
in die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

(Ort / Place, Datum / Date) (Unterschrift / Signature)

Abstract

Concurrent systems that are composed of an arbitrary number n of processes,
are hard to get correct. For these systems, parameterized model checking can
provide correctness guarantees that hold regardless of n. However, model check-
ing gives the designer no information about a possible repair when detecting an
incorrect behaviour. The parameterized repair problem is, for a given implemen-
tation, to find a deadlock-free refinement such that a given property is satisfied by
the resulting parameterized system. Recently, a parameterized repair approach
was introduced, providing correctness guarantees for the repaired system that
hold regardless of the number of processes. For safety properties, this approach
can be applied on classes of systems, including disjunctive systems, pairwise ren-
dezvous systems and broadcast protocols. However, it cannot guarantee liveness
properties, e.g., termination or the absence of undesired loops.

This master’s thesis presents a repair approach that provides parameterized
correctness guarantees for liveness properties by modifying the existing repair
algorithm. The approach generates minimal repairs such that only behavior of
the system is restricted which violates the specification. Since it cannot repair
parameterized systems if the specification requires additional nondeterminism or
communication between processes, we introduce a paramaterized repair approach
that generates minimal repair transformations. A minimal repair transformation
changes the system by applying a set of operations that can introduce addi-
tional behavior including more communication if needed. We show that a repair
transformation can be generated if and only if there exists a system satisfying
the specification while preserving the given system structure. Furthermore, both
algorithms are evaluated on a range of benchmarks.

Acknowledgment

I am very grateful to Dr.-Ing. Swen Jacobs for giving me the opportunity to work
on such an interesting topic, fulfilling my research interests. Furthermore, I want
to thank him for the guidance and help to complete this thesis. Another grateful
thank to Dr.-Ing. Swen Jacobs and Prof. Bernd Finkbeiner for reviewing this
thesis. Last but not least, I want to thank my family and friends, especially my
parents Ute and Jürgen, and my brother Jan, for their ongoing support.

Contents

1 Introduction 11

2 Preliminaries 13

2.1 System Model . 13

2.2 LTL . 16

2.2.1 Syntax . 16

2.2.2 Semantics . 17

2.3 Automata . 20

2.3.1 Automata on Finite Words 20

2.3.2 Automata on Infinite Words 21

2.4 Model-Checking . 24

3 Parameterized Repair of Guarded Protocols for Safety Proper-
ties 27

3.1 Motivation . 27

3.2 Problem Statement . 28

3.2.1 Counter System . 28

3.2.2 Parameterized Repair . 31

3.3 Parameterized Model Checking 32

3.3.1 Counter Systems as WSTS 32

3.3.2 Parameterized Model Checking Algorithm 35

3.3.3 Deadlock Detection . 36

3.4 Parameterized Repair Algorithm 38

3.4.1 Reachable Error Sequence 38

3.4.2 Constraint Solving for Candidate Repairs 39

3.4.3 Parameterized Repair Algorithm 41

3.5 Extensions and Limitations . 42

3.5.1 Beyond Reachability . 42

3.5.2 Beyond Disjunctive Systems 43

3.5.3 Limitations . 43

8

4 Refinement-Based Parameterized Repair of Guarded Protocols
for Liveness Properties 45
4.1 Motivating Example . 45
4.2 Problem Statement . 46
4.3 Parameterized Model Checking for Liveness Properties 49

4.3.1 Cutoff . 49
4.3.2 Parameterized Model Checking Algorithm 50

4.4 Parameterized Minimal Repair . 50
4.4.1 Constraint Solving for Minimal Candidate Repairs 50
4.4.2 Parameterized Minimal Repair Algorithm 51

4.5 Deadlock Detection . 53
4.6 Extensions and Limitations . 54

5 Operation-Based Parameterized Repair of Guarded Protocols 57
5.1 Motivating Example . 57
5.2 Problem Statement . 58

5.2.1 Operations . 58
5.2.2 Minimal Repair Transformations 60
5.2.3 Parameterized Minimal Repair Problem 62

5.3 Verification of Finite-State Systems 63
5.4 Parameterized Minimal Repair . 65

5.4.1 Constraint Solving for Valid Annotation Functions 65
5.4.2 Constraint Solving for Minimal Repairs 67
5.4.3 Deadlock Detection . 68
5.4.4 Parameterized Minimal Repair Algorithm 69

5.5 Extensions and Limitations . 70

6 Implementation and Evaluation 73
6.1 Prototype Implementation . 73
6.2 Experimental Results . 73

6.2.1 Benchmarks . 74
6.2.2 Technical Details . 74
6.2.3 Observations . 74

7 Related Work 77

8 Conclusion 79

Chapter 1

Introduction

Concurrent systems are systems composed of independent components that per-
form operations concurrently and may communicate with each other. Since they
are hard to get correct, they are a promising application area for formal meth-
ods. For paramaterized systems, i.e., systems that are composed of an arbitrary
number of processes, parameterized model checking is able to provide correctness
guarantees that hold regardless of the number of processes. If the paramaterized
model checker detects a fault in the system, it returns a system execution that vi-
olates the given specification. However, it does not provide any information how
to repair the system such that is satisfies the specification. Instead, the designer
has to find out which behavior of the system causes the error. Then, the designer
has to repair the faulty system for the found incorrect behavior. Since both tasks
may be nontrivial, there is a need for a repair method that automatically returns
a corrected parameterized system.

A parameterized repair approach was recently introduced by Jacobs et al.
where parameterized systems are represented as guarded protocols [36]. For a
given nondeterministic system, the repair approach restricts nondeterminism to
eliminate faults in the internal behavior of a process. For a system that is known
to be incorrect, this nondeterminism may have been added by the designer to ini-
tiate possible repairs. To repair the communication between processes, the repair
approach selects the right options out of a set of possible interactions. Further-
more, the approach includes a deadlock detection, to avoid repairs that introduce
deadlocks. This is essential, since often the easiest way to ”repair” incorrect be-
havior is to let the system run into a deadlock as soon as possible. While the
repair approach provides parameterized correctness guarantees for safety prop-
erties, i.e., the repaired implementation is correct for any number of processes,
the approach cannot guarantee any liveness properties such as termination or the
absence of undesired loops. Furthermore, the repaired system is not guaranteed
to only restrict behavior of the faulty system that causes incorrect executions.
However, the designer may be interested in repaired systems that preserve as
much communication between the processes as possible. Moreover, if a given

11

CHAPTER 1. INTRODUCTION

paramaterized system cannot be repaired, the approach offers no additional feed-
back about additional required behavior of the system. Instead, the designer
has to add more nondeterminism for more communication, and run the repair
algorithm again. Since this may be a non-trivial and exhausting task, there is a
need for a parameterized repair approach that can automatically introduce more
communication between processes.

This master’s thesis introduces a minimal repair approach that provides pa-
rameterized correctness guarantees for liveness properties. A minimal repair en-
sures to only restrict behavior of the system that causes an incorrect execution.
Our approach modifies the existing algorithm to generate refinements that only
restricts incorrect behavior of the system. Moreover, we introduce a minimal
repair approach that can automatically add new behavior including more com-
munication while preserving correctness guarantees. This approach is inspired by
techniques used for the explainable synthesis approach [10] and is based on repair
transformations that can apply different operations to add more communication
if needed. Thereby, the approach guarantees to repair any implementation if and
only if there exists a system preserving the structure of the implementation that
satisfies the specification. Both approaches are implemented as an extension to
the synthesis tool BoSy [27] and are evaluated on a range of benchmarks.

This thesis is structured as follows. Chapter 2 gives the necessary background
information and definitions for the upcoming constructions and repair algorithms.
The parameterized repair approach for safety properties, introduced by Jacobs et
al. [36], is presented in Chapter 3. The modified repair approach that minimally
repairs parameterized systems for liveness properties is introduced in Chapter
4. Chapter 5 presents the minimal repair approach that can automatically add
more communication. The prototype implementation is shown and evaluated in
Chapter 6. Related Work is discussed in Chapter 7 and we conclude this thesis
in Chapter 8.

12

Chapter 2

Preliminaries

In this chapter, we introduce the system model, consisting of process templates
and guarded protocols. Furthermore, we recap the specification language LTL
used to formulate safety and liveness properties, and some automata that are
essential for upcoming repair constructions. Last, we present a model-checking
approach for finite state system and properties expresses as LTL-formulas.

2.1 System Model

In this thesis, we represent parameterized systems as guarded protocols, consist-
ing of multiple process templates. The definitions are taken from Jacobs and
Sakr [35].

Let Q be finite set of states.

Definition 2.1.1. (Process Template)
A process template is a transition system U = (QU , initU , δU) with

• QU is a finite set of states, including the initial state initU

• δU : QU × P(Q)×QU is a guarded transition relation.

We define the size of U as |U | = |QU |. An instance of template U will be
called a U-process.

Definition 2.1.2. (Guarded Protocol)
Fix process templates A and B. A guarded protocol is a system A||Bn, consisting
of one A-process and n B-processes in an interleaving parallel composition.

We assume that Q = QA ∪̇QB, i.e., process templates A and B have disjoints
set of states. Different B-processes are distinguished by subscript, i.e., for i ∈
[1..n], Bi is the ith instance of B, and qBi

is a state of Bi. A state of A is denoted
by qA. We denote the set of {A,B1, . . . , Bn} as P , and write p for a process in

13

CHAPTER 2. PRELIMINARIES

nw w {r}

(a) Writer

nr r

{nw}
{nw}

(b) Reader

Figure 2.1: Two process templates

P . For U = {A,B}, we write GU for the set of non-trivial guards, i.e., guards
different from Q and ∅. Then, let G = GA ∪GB.

Definition 2.1.3. (Disjunctive and Conjunctive Guards)
In a guarded protocol A||Bn, a local transition (qp, g, q

′
p) ∈ δU of p is enabled in

s if its guard g is satisfied for p in s, written (s, p) ⊨ g. There are two types of
guarded protocols, depending on their interpretation of guards:

In disjunctive systems: (s, p) ⊨ g iff ∃p′ ∈ P\{p} : g′p ∈ G.

In conjunctive systems: (s, p) ⊨ g iff ∀p′ ∈ P\{p} : g′p ∈ G.

Let set(s) = {qA, qB1 , . . . , qBn}, and for a set of processes P = {p1, . . . , pk},
setP (s) = {qp1 , . . . , qpk}. Then for disjunctive systems, we can more succinctly
state that (s, p) ⊨ g iff setP\p(s)∩ g ̸= ∅, and for conjunctive systems (s, p) ⊨ g iff
setP\p(s) ⊆ g. A process is enabled in s if at least one of its transitions is enabled
in s, otherwise it is disabled. Intuitively, for disjunctive systems a transition with
a guard g is enabled if there exists another process that is currently in one of the
states of g. In contrast, for conjunctive systems a transition with a guard g is
enabled if every other process is currently in one of the states of g.

Example 2.1.1. Consider the process templates depicted in Figure 2.1, taken
from [36]. Throughout this thesis, the examples consider guarded protocols A||Bn,
where A is the writer and B is the reader. The guards of the transitions determine
which transitions can be taken by a process, depending on its own state and the
state of other processes. Transitions with the trivial guard g = Q are displayed
without a guard since they are always enabled.

In this thesis, we assume that in conjunctive systems initA and initB are
contained in all guards, i.e. they act as neutral states. For conjunctive sys-
tems, we call a guard k-conjunctive if it is of the form Q\{q1, . . . , qk} for some
q1, . . . , qk ∈ Q. A state q is k-conjunctive if all non-trivial guards of transitions of
q are k′-conjunctive with k′ ≤ k. A conjunctive system is k-conjunctive if every
state is k-conjunctive.

Then, A||Bn is defined as the transition system (S, initS,∆) with

• set of global states S = (QA)× (QB)n,

14

CHAPTER 2. PRELIMINARIES

(nw,(nr,nr))(w,(nr,nr))

(nw,(r,nr))

(nw,(nr,r))

(nw,(r,r))

(w,(r,nr))

(w,(nr,r))

(w,(r,r))

Figure 2.2: State space of the disjunctive system consisting of one writer process
and two reader processes

• global initial state initS = (initA, initB, . . . , initB),

• and global transition relation ∆ ⊆ S × S with (s, s′) ∈ ∆ iff s′ is obtained
from s = (qA, qB1 , . . . , qBn) by replacing one local state qp with a new local
state q′p, where p is a U -process with local transition (qp, g, q

′
p) ∈ δU and

(s, p) ⊨ g.

A path of a system is a sequence of states x = s1, s2, . . . such that for all
m < |x| there is a transition (sm, sm+1) ∈ ∆ based on a local transition of some
process pm. We say that process pm moves at moment m. A path can be finite or
infinite, and a maximal path is a path that cannot be extended, i.e., it is either
infinite or ends in a state where no transition is enabled.

Definition 2.1.4. (Run)
A system run of a guarded protocol A||Bn is a maximal path starting in the initial
state initS.

We say that a run is initializing if every process p that moves infinitely often,
visits its local initial state initp infinitely often. The set of runs of a guarded
protocol A||Bn is called the language of A||Bn, denoted by L(A||Bn).

Given a system path x = s1, s2, . . . and a process p, the local path of p in x
is the projection x(p) = s1(p), s2(p), . . . of x onto local states of p. A local path
x(p) is a local run, if x is a run.

A run is globally deadlocked if it is finite. An infinite run is locally deadlocked
for process p if there exists m such that p is disabled for all sm′ with m′ ≥
m. A run is deadlocked if it is locally or globally deadlocked. A system has a
(local/global) deadlock if it has a (locally/globally) deadlocked run. Note that
absence of local deadlocks for all p implies absence of global deadlocks, but not
the other way around.

Example 2.1.2. Figure 2.2 depicts the state space for the disjunctive system
A||B2, where A is the writer and B is the reader process. Every global state stores

15

CHAPTER 2. PRELIMINARIES

the current position for each process. Initially, every local state starts in its initial
state, i.e., s0 = (nw, (nr, nr)). For s0 the writer could access the writing state and
reach the global state (w, (nr, nr)). Alternatively, one of the reader processes can
move in s0 and enter the reading state, since initially the writer is in state nw.
Thus, the global states (nw, (r, nr)) and (nw, (nr, r)) are possible successors for s0.
Furthermore, the global states (w, (r, nr)), (nw, (r, r)), (w, (nr, r)) and (w, (r, r)) are
also reachable. All possible transitions of A||B2 are depicted in Figure 2.2. The
system is globally deadlock-free since there is no finite run. However, it has a local
deadlock. For the run (nw, (nr, nr)), (nw, (r, nr)), ((w, (r, nr)))ω, the second reader
process is disabled in its local state nr when reaching the global state (w, (r, nr)).
Since the run stays in this global state forever, the run is locally deadlocked.

2.2 LTL

In this thesis, the specifications are formulized in linear-time temporal logic
(LTL). In this section, we define the syntax and semantics of the specification
language, with definitions taken from Baier and Katoen [8].

2.2.1 Syntax

Definition 2.2.1. (Syntax of LTL)
LTL-formulas over a set of atomic propositions AP are built according to the
following grammar:

φ ::= true | a | ¬φ |φ1 ∧ φ2 | φ |φ1 U φ2,

where a ∈ AP .

The operators are defined as follows:

• ¬ is a unary operator, called negation

• ∧ is a binary operator, called conjunction

• is a unary operator, called next

• U is a binary operator, called until

LTL is defined over two different types of operators, boolean connectives and
temporal operators. Boolean connectives are also known from other logics, e.g.
predicate logics.

Using the boolean connectives ¬ and ∧, we can derive some other basic
boolean connectives:

16

CHAPTER 2. PRELIMINARIES

a

a arbitrary arbitrary arbitrary

. . .

a

arbitrary a arbitrary arbitrary

. . .

a U b

a ∧ ¬b a ∧ ¬b b arbitrary

. . .

a

¬a ¬a a arbitrary

. . .

a

a a a a
. . .

Figure 2.3: An intuitive semantics of temporal modalitites

• φ1 ∨ φ2 := ¬(¬φ1 ∧ ¬φ2) is a binary operator, called disjunction

• φ1 → φ2 := ¬φ1 ∨ φ2 is a binary operator, called implication

• φ1 ↔ φ2 := (φ1 → φ2)∧ (φ2 → φ1) is a binary operator, called equivalence

The next and until operator are the basic temporal operators. They are
extended by the following abbreviations:

• φ := trueU φ is a unary operator, called eventually

• φ := ¬(¬φ) is a unary operator, called globally

• φ1W φ2 := (φ1 U φ2) ∨ φ1 is a binary operator, called weak until

2.2.2 Semantics

The semantics of LTL is defined over infinite words, i.e., over infinite sequences.
In this section, we introduce the semantics and formulate when an infinite words
satisfies an LTL-formula. An infinite word is defined as follows:

Definition 2.2.2. (Infinite Word)
An infinite word or ω-word on an alphabet Σ is a sequence σ : N→ Σ.

17

CHAPTER 2. PRELIMINARIES

The LTL-syntax allows an LTL-formula to contain boolean connectives and
temporal operators. In Figure 2.3 an intuition for the semantics of the tempo-
ral operators is depicted. The first column consists of an LTL-formula and the
following graph represents an infinite word that satisfies the corresponding for-
mula. Therefore, each state signals the variable assignment at this time step. If
the given LTL-formula consists only of one atomic proposition a, obviously every
infinite sequence σ, where a holds initially, satisfies the LTL-formula. For the
LTL-formula a, every infinite sequence, where a holds at the second position,
is accepted. aU b accepts an infinite word if there is a position j such that a
holds for every position i with 0 ≤ i < j and b holds at position j. The formula

a accepts an infinite sequence σ if there is a position i where a eventually
holds. The ω-word where a holds in every time step, is the only one that satisfies
the LTL-formula a. The formal definition of the LTL-semantics is defined as
follows.

Definition 2.2.3. (Semantics of LTL)
Let φ be an LTL-formula over AP . The LT-property induced by φ is

L(φ) = {σ ∈ (2AP)ω |σ ⊨ φ},

where the satisfaction relation ⊨⊆ (2AP)ω×LTL is the smallest relation satisfying:

σ ⊨ true

σ ⊨ a iff a ∈ σ(0) (i.e. σ(0) ⊨ a)

σ ⊨ ¬φ iff σ ⊭ φ

σ ⊨ φ1 ∧ φ2 iff σ ⊨ φ1 and σ ⊨ φ2

σ ⊨ φ iff σ[1,∞] = σ(1)σ(2)σ(3) · · · ⊨ φ

σ ⊨ φ1 U φ2 iff ∃j ≥ 0.σ[j,∞] ⊨ φ2 and σ[i,∞] ⊨ φ1 for all 0 ≤ i < j

We say that a sequence σ ∈ (2AP)ω is a model of an LTL-formula φ if σ ⊨ φ.
By L(φ) we denote the language of φ, i.e., L(φ) is the set of sequences σ ∈
(2AP)ω that model φ. We distinguish between safety and liveness languages.
Intuitively, a safety property requires that ”something bad will never happen”,
whereas a liveness property states that ”something good will eventually occur”.
Thus, a safety property is violated if there exists a finite sequence violating the
specification.

Definition 2.2.4. (Bad-prefix)
A finite word w ∈ {1, . . . , i} → Σ over some finite alphabet Σ is called a bad-
prefix for a language L ⊆ Σω, if every infinite word σ ∈ (N → Σ) with prefix w
is not in the language L.

Definition 2.2.5. (Safety Language)
A language L ⊆ (N→ Σ) over some finite alphabet Σ is called a safety language,
if every σ /∈ L has a bad-prefix.

18

CHAPTER 2. PRELIMINARIES

We denote the set of bad-prefixes for a language L by BP (L). In contrast,
for liveness languages there exists no bad-prefix.

Definition 2.2.6. (Liveness Language)
A language L ⊆ (N→ Σ) over some finite alphabet Σ is called a liveness language,
if for every finite word w ∈ {1, . . . , n} → Σ, there exists an infinite word σ ∈
(N→ Σ) with prefix w such that σ ∈ L.

The following theorem states that every linear time property, can be decom-
posed into a safety and liveness property.

Theorem 2.2.1. [8](Decomposition)
For any LT-property φ over some finite alphabet Σ, there exists a safety property
φsafe over Σ and a liveness property φliveness over Σ such that:

L(φ) = L(φsafe) ∩ L(φliveness)

In this thesis, we consider liveness properties, expressed as formulas in LTL\X,
i.e., LTL formulas without the next operator . For a guarded protocol, defined
over process templates A and B, we consider an LTL\X formula φ over atomic
propositions from QA and indexed propositions from QB ×{1, . . . , k}. We call φ
a paramaterized specification. The satisfaction relation for a given parameterized
specification and a guarded protocol is defined as follows.

Definition 2.2.7. (Satisfaction Relation for Guarded Protocols)
Given a guarded protocol A||Bn and a parameterized specification φ over atomic
propositions from QA and indexed propositions from QB ×{1, . . . , k} with k ≤ n,
we say that A||Bn is a model of φ, denoted by A||Bn ⊨ φ, iff L(A||Bn) ⊆ L(φ).

Thus, a guarded protocol A||Bn satisfies a parameterized specification φ if
every trace of A||Bn satisfies φ. A parameterized specification φ defined over k
B-processes for process templates A = (QA, initA, δA) and B = (QB, initB, δB) is
realizable if there exist A′ = (QA, initA, δ

′
A) and B′ = (QB, initA, δ

′
B) such that

A′||B′k ⊨ φ.

Example 2.2.1. Consider the following specifications over atomic propositions
from QA = {nw,w} and QB × {1, 2} = {nr, r} × {1, 2}, i.e., states from the
process templates in Figure 2.1. The specification φmutex = (w → (nr1 ∧ nr2))
ensures that none of the reader processes is in the reading state, while the writer
is currently writing. Thus, φmutex is a safety property since a word violates the
specification iff a writer is writing and at least one reader is reading at the same
time. The specification φfair = (nr1 → r1) ∧ (nr2 → r2) guarantees that
both reader processes will eventually enter the reading state whenever they are
not reading. φfair is a liveness property since every finite word could be fixed by
entering the reading state for both processes and remaining there forever.

19

CHAPTER 2. PRELIMINARIES

2.3 Automata

In this section, we recap the automata from Baier and Katoen [8] that are essential
for upcoming algorithms in this thesis. We start by introducing automata on finite
words. Afterwards, we present automata on infinite words, i.e., nondeterministic
Büchi automata and universal co-Büchi automata.

2.3.1 Automata on Finite Words

Definition 2.3.1. (Nondeterministic Finite Automaton)
A nondeterministic finite automaton A over a finite alphabet Σ is a tuple A =
(Q, q0, δ, F) where

• Q is a finite set of states, including the initial state q0

• δ : Q× 2Σ ×Q is a transition relation

• F ⊆ Q is a set of accepting states

The language of an automaton A on finite words, denoted by L(A), is the set
of finite words that are accepted by the automaton. A finite word w is defined
as

w = w1, w2, . . . , wn ∈ (2Σ)∗,

where wi is the letter of w at position i.

Definition 2.3.2. (Run)
A run of a finite word σ ∈ (2Σ)∗ on a nondeterministic finite automaton A =
(Q, q0, δ, F) is a finite path q0q1 . . . qn ∈ Q∗ where q0 is the initial state and for
all 0 ≤ i < n it holds that (qi, σi, qi+1) ∈ δ.

Definition 2.3.3. (Accepting Run)
A run q0q1 . . . qn ∈ Q∗ on a nondeterministic finite automaton A = (Q, q0, δ, F)
is accepting iff qn ∈ F .

Intuitively, a run is accepting if it ends in an accepting state. A finite word w
is accepted by a finite nondeterministic automaton A iff there exists an accepting
run of w on A. We also say that w is contained in the language of A, denoted
by w ∈ A.

The language accepted by a nondeterministic finite automaton constitutes a
regular language [8]. Vice versa, for any regular language L, there exists a non-
deterministic finite automaton A with L(A) = L. Hence, the class of regular
languages agrees with the class of languages accepted by a nondeterministic au-
tomaton. For a safety property φ, the bad-prefix automaton ABP for φ is a finite
automaton where for every finite word w it holds that w ∈ L(ABP) iff w is a
bad-prefix for φ.

20

CHAPTER 2. PRELIMINARIES

q0 q1 qe

w∧nr1

nw∨r1

nw

w∧r1

w∧nr1

Figure 2.4: Bad-Prefix Automaton for φ = ((w ∧ nr1)→ (nr1W nw))

Example 2.3.1. Consider the finite automaton in Figure 2.4 and the specifica-
tion φ = ((w ∧ nr1) → (nr1W nw)). Intuitively φ requires that whenever the
writer is currently writing, the reader process is only allowed to start reading as
soon as the writer process is done writing. The automaton accepts a finite word
w if it reaches the accepting state qe. An accepting run has to eventually reach
q1 which is only possible if the writer is writing while the reader process is not
reading. Then, qe is reached if the reader is entering the reading state while the
writer is still writing. Thus, the automaton accepts a finite word if eventually the
reader starts reading while the writer has not finished writing, i.e., the automaton
accepts a finite word w iff w is a bad-prefix for φ. Hence, the the automaton is a
bad-prefix automaton for φ.

2.3.2 Automata on Infinite Words

Nondeterministic Büchi Automata

Definition 2.3.4. (Nondetereministic Büchi Autamaton)
A nondeterministic Büchi automaton A over a finite alphabet Σ is a tuple (Q, q0, δ, F)
where

• Q is a finite set of states, including the initial state q0

• δ : Q× 2Σ ×Q is a transition relation

• F ⊆ Q is a set of accepting states.

The language of an automaton A on infinite words, denoted by L(A), is the
set of infinite words that are accepted by the automaton. An infinite word σ is
defined as

σ = σ0σ1 . . . σi · · · ∈ (2Σ)ω,

where σi is the letter of σ at position i.

Definition 2.3.5. (Run)
A run of an infinite word σ ∈ (2Σ)ω on a nondeterministic Büchi automaton
A = (Q, q0, δ, F) is an infinite path q0q1q2 · · · ∈ Qω where q0 is the initial state
and for all i ≥ 0 it holds that (qi, σi, qi+1) ∈ δ.

21

CHAPTER 2. PRELIMINARIES

q0

q1qe q2

nr2w∧(r1∨r2) nr1

∗

nr1∗ nr2

Figure 2.5: Representation of the nondeterministic Büchi Automaton used in
Example 2.3.2 and the universal co-Büchi Automaton in Example 2.3.3

Definition 2.3.6. (Accepting Run)
A run q0q1q2 · · · ∈ Qω on a nondeterministic Büchi automaton A = (Q, q0, δ, F)
is accepting, iff qi ∈ F holds for infinitely many i.

Intuitively, a run is accepting if it visits an accepting state infinitely often.
An infinite word σ is accepted by a nondeterministic Büchi automaton A iff there
exists an accepting run of σ on A. We also say that σ is contained in the language
of A, denoted by σ ∈ L(A).

Example 2.3.2. Consider the nondeterministic Büchi automaton over the input
alphabet Σ = {nw,w, nr1, nr2, r1, r2} depicted in Figure 2.5. An infinite word σ
is accepted if there exists a run for σ that remains in one of the accepting states
forever, i.e., in qe, q1 or q2. A run visits qe infinitely often if w eventually holds
while r1 or r2 hold at the same time. Thus, a word is accepted if it does not satisfy
the formula φmutex from Example 2.2.1. Further, an accepting run visits q1 or q2
infinitely often if eventually nr1 or nr2 holds forever. Hence, a word is accepted
if it does not satisfy φfair from Example 2.2.1. Thus, the nondeterministic Büchi
automaton accepts an infinite word σ iff σ ⊨ ¬(φmutex ∧ φfair).

Universal co-Büchi Automata

Definition 2.3.7. (Universal co-Büchi Automaton)
A universal co-Büchi automaton A over a finite alphabet Σ is a tuple (Q, q0, δ, F),
where

• Q is a finite set of states, including the initial state q0

• δ : Q× 2Σ ×Q is a transition relation

22

CHAPTER 2. PRELIMINARIES

• F ⊆ Q is a set of rejecting states.

Definition 2.3.8. (Run)
A run of an infinite word σ ∈ (2Σ)ω on a universal co-Büchi automaton A =
(Q, q0, δ, F) is an infinite path q0q1q2 · · · ∈ Qω where q0 is the initial state and for
all i ≥ 0 it holds that (qi, σi, qi+1) ∈ δ.

Definition 2.3.9. (Accepting Run)
A run q0q1q2 ∈ Qω on a universal co-Büchi automaton A = (Q, q0, δ, F) is ac-
cepting, iff qi ∈ F holds for finitely many i.

Intuitively, a run is accepting if it visits every rejecting state only finitely
often. An infinite word σ is accepted by a universal co-Büchi automaton iff every
run of σ on A is accepting. We also say that σ is contained in the language of
A, denoted by σ ∈ L(A).

Example 2.3.3. The automaton in Figure 2.5 can also be interpreted as a uni-
versal co-Büchi automaton. The automaton accepts a word σ iff every run of
σ visits every rejecting state, i.e., qe, q1 and q2, finitely often. As mentioned in
Example 2.3.2, a run for σ visits one of these states infinitely often if σ does
not satisfy φmutex or φfair. Thus, a word σ is accepted by the universal co-Büchi
automaton iff σ ⊨ φmutex ∧ φfair.

Büchi and co-Büchi are dual, i.e., a nondeterministic Büchi automaton can
be complemented into a universal co-Büchi automaton and vice versa. There-
fore, we switch the acceptance condition and dualize the transition function, i.e.,
nondeterministic transitions are interpreted universally and vice versa. For ex-
ample, the nondeterministic Büchi automaton A in Example 2.3.2 accepts a word
σ iff σ ⊨ ¬(φmutex ∧ φfair). The automaton can be transformed into the universal
co-Büchi automaton A′ in Example 2.3.3 by switching the acceptance condition
and dualizing the transition function. After complementing, A′ recognizes the
complement language L(A′) = Σω\L(A), i.e., L(A′) = L(φmutex ∧ φfair).

The following two theorems are essential for upcoming algorithms. Theorem
2.3.1 states that every LTL-formula φ can be transformed into a nondeterministic
Büchi automaton A with L(A) = L(φ). Theorem 2.3.2 states that every non-
deterministic Büchi automaton A can be transformed into a universal co-Büchi
automaton A′ with L(A′) = L(A), and vice versa.

Theorem 2.3.1. [38] For a given LTL-formula φ, there is a nondeterministic
Büchi automaton A with L(A) = L(φ). The size of A is exponential in the length
of φ.

Theorem 2.3.2. [42] Nondeterministic Büchi automata and universal co-Büchi
automata are equivalent in expressive power, i.e., they recognize the same ω-
languages.

23

CHAPTER 2. PRELIMINARIES

A¬φ
⊗

M

Nondet. Büchi
Automaton A¬φ

LTL-Property φ

System M

Yes, M ⊨ φ No, Trace(M) ⊨ ¬φ

Figure 2.6: LTL-Model-Checking

2.4 Model-Checking

In this section, we explain the principles of model-checking. After presenting
a method for model-checking general LTL-properties, we show a simplified ap-
proach to model-check safety properties from Baier and Kathoen [8]. This is
essential for upcoming repair algorithms.

In Sections 2.1 and 2.2, we have described how guarded protocols can be
represented as transition systems and how we can express general properties of
a system as specifications, formulated in LTL. A given system model M models
an LTL-formula φ if each trace of M satisfies φ, i.e. L(M) ⊆ L(φ). A model-
checking algorithm checks whether a system models a given specification or not.
One possibility of LTL-model-checking is depicted in Figure 2.6. The algorithm
consists of the following steps:

1. Preprocessing: Formulate the specification as an LTL-formula φ and im-
plement a system, represented by the transition system M .

2. Build a nondeterministic Büchi automaton A¬φ for the negated formula of
φ, such that L(A¬φ) = L(¬φ), obtained by the construction in Theorem
2.3.1.

3. Construct the product M ⊗A¬φ of the system M and automaton A¬φ.

4. Check if there is a trace of M ⊗ A¬φ that simulates an accepting run in
A¬φ. If such a trace exists then M ⊭ φ, otherwise M ⊨ φ.

The idea is that the model checking algorithm checks if there exists a trace
of the system M that does not satisfy φ rather than checking if every trace of M

24

CHAPTER 2. PRELIMINARIES

satisfies φ. If such a trace exists then M ⊭ φ, otherwise M ⊨ φ. The product of
an automaton A and a system M is a transition system M ′ that simulates both A
and M . So each state tells the position in A and M for a given sequence of inputs.
Checking if there exists a trace that simulates an accepting run in A is done by
performing a nested depth-first search on the product. Such a trace contains an
infinite cycle that visits an accepting state. For safety properties, a violating trace
only has to reach a ”bad” state. Thus, a finite bad-prefix automaton is sufficient
and instead of checking for an accepting cycle in the product, the algorithm
checks for a finite execution that reaches an accepting state. The complexities
of model-checking safety properties and LTL-model-checking are shown in the
following theorems:

Theorem 2.4.1. [8] The time and space complexity of checking a regular safety
Property φ against a transition System M is in O(|M | · |ABP |), where ABP is a
bad-prefix automaton for φ.

Theorem 2.4.2. [8] I The LTL-model-checking problem is Pspace-complete.

25

Chapter 3

Parameterized Repair of
Guarded Protocols for Safety
Properties

In this chapter, we introduce the parameterized repair approach, introduced by
Jacobs, Sakr and Völp [36]. Further, we present their parameterized model check-
ing and deadlock detection algorithm. After showing their parameterized repair
algorithm, we discuss the limitations of their approach. We start by giving a
short motivation with examples from [36].

3.1 Motivation

Parameterized systems that are composed of an arbitrary number of processes,
are hard to get correct. The parameterized model checking method is able to
provide security guarantees that hold regardless of the number of processes. If
the parameterized model checker detects a fault in the system, it returns a pos-
sible execution that violates a given specification. However, it does not give any
information how the designer can repair the system or which behavior of the
system causes the error. Since these tasks may be nontrivial, we are interested in
a repair approach that automatically returns a correct implementation. Starting
with a nondeterministic system, the repair algorithm restricts nondeterminism
to eliminate faults in the internal behavior of a process. To repair the commu-
nication between processes, the approach selects the right options out of a set
of possible interactions. Since the easiest way to avoid incorrect behavior is to
let the system run into a deadlock as soon as possible, only repairs that do not
introduce deadlocks, are generated. The resulting repaired implementation is a
refinement such that all parameterized correctness guarantees hold regardless of
the number of processes.

Consider the parameterized system in Figure 3.1, consisting of the unsafe

27

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

qa

qb
d

on
e r

?
d

on
e w

?
re

ad
?

w
ri

te
? d

on
e
r ?

d
on

e
w

?
read

?
w

rite?

(a) Unsafe Scheduler

q0

q1

{writing}

q2

{reading}

τ

write! donew!

doner!read!

(b) Reader-Writer

qa

qb

re
ad

?

w
ri

te
?

d
on

e
r ?

d
on

e
w

?

(c) Safe Scheduler

Figure 3.1: Motivating Example

scheduler in Figure 3.1a and an arbitrary number of reader-writer processes,
depicted in Figure 3.1b. The processes communicate via pairwise synchronisation
such that a sending action (e.g. write!) can only proceed if another process
executes a corresponding receive action (e.g. write?). For this system, global
error states are reachable where multiple processes are in the writing-state at
the same time. In the approach, we are interested in repairing the system by
restricting the communication such that global error states are unreachable. One
possibility to avoid error states where multiple processes are writing at the same
time, is to remove all receiving actions for the scheduler in state qa. However,
then the system is globally deadlocked initially. Therefore, we are interested in
repairs that are deadlock-free. Figure 3.1c shows a repair that is able to avoid
global error states and does not introduce deadlocks.

3.2 Problem Statement

In this section, we formally define the problem statement. First, we show how
parameterized systems can be represented as counter systems. Then, we define
the parameterized repair problem and give a high-level explanation of the repair
algorithm.

3.2.1 Counter System

In Section 2.1, process templates and an explicit representation of the global
disjunctive system are represented. For fixed process templates A and B, a
guarded protocol A||Bn consists of one process A and n copies of process B. A

28

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

global state s ∈ (QA)×(QB)n stores the current position of each local process. In
the following, we show an alternative system representation that only counts the
number of processes currently in qB, for each local state qB of process template
B. Such a global state is called a configuration. In the following, we formalize
this representation for disjunctive systems. The definitions are taken from [36].

Definition 3.2.1. (Configuration)
Fix process templates A = (QA, initA, δA) and B = (QB, initB, δB). A configura-
tion of a system A||Bn is a tuple (qA, c), where qA ∈ QA and c : QB → N0.

We identify c with the vector (c(q0), . . . , c(q|B|−1)) ∈ N|B|
0 , and also use c(i)

to refer to c(qi). Intuitively. c(qi) indicates how many processes are in state qi.
We denote by ui the unit vector with ui(i) = 1 and ui(j) = 0 for j ̸= i.

Example 3.2.1. Consider the process templates from Figure 2.1 again, where
A is the writer and B is the reader. Two possible configurations of the system
A||B2 are s1 = (nw, (1, 1)) and s2 = (w, (0, 2)). s1 indicates that the A-process is
currently in the local state nw, one B-process is in nr and one B-process is in the
reading state r. For the configuration s2, the A-process is currently in the writing
state w while both B-process are in the reading state r.

Given a configuration s = (qA, c), we say that a guard g of a local transition
(qU , g, q

′
U) ∈ δU is satisfied in s, denoted by s ⊨qU g, if one of the following

conditions hold:

(a) qU = qA, and ∃qi ∈ QB with qi ∈ g and c(i) ≥ 1
(A takes the transition, a B-process is in g)

(b) qU ̸= qA, c(qU) ≥ 1, and qA ∈ g
(a B-process takes the transition, A is in g)

(c) qU ̸= qA, c(qU) ≥ 1, and ∃qi ∈ QB with qi ̸= qU and c(i) ≥ 1
(a B-process takes the transition, another B-process is in a different state
that is in g)

(d) qU ̸= qA, c(qU) ≥ 2, and qU ∈ g
(a B-process takes the transition, another B-process is in the same state
that is in g)

We also say that the local transition is enabled in s.

Definition 3.2.2. (Configuration Space)
Fix process templates A and B. The configuration space of all systems A||Bn for
arbitrary n ∈ N, is the transition system M = (S, S0,∆) where:

• S ⊆ QA × N|B|
0 is the set of states,

29

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

(nw,(2,0))(w,(2,0)) (nw,(1,1))

(nw,(0,2))

(w,(1,1))

(w,(0,2))

Figure 3.2: Configuration space of the system A||B2, where A is the writer and
B is the reader from Figure 2.1.

• S0 = {(initA), c) | c(q) = 0 if q ̸= initB} is the set of initial states,

• ∆ ⊆ S × S is the set of transitions where ((qA, c), (q′A, c
′)) ∈ ∆ iff one of

the following holds:

1. c = c′ and ∃(qA, g, q′A) ∈ δA with (qA, c) ⊨qA g
(transition of the A-process)

2. qA = q′A and ∃(qi, g, qj) ∈ δB with c(i) ≥ 1 ∧ c′ = c = ui + uj and
(qA, c) ⊨qi g
(transition of a B-process)

We also call M the counter system (of A and B), and call configurations states
of M , or global states.

Let s, s′ ∈ S be states of M and U ∈ {A,B}. For a transition (s, s′) ∈ ∆, we
also write s→ s′. If the transition is based on local transition tU = (qU , g, q

′
U) ∈

δU , we also write s
tU→ s′ or s

g→ s′. Let ∆local(s) = {tU | ∃s′ ∈ S : s
tU→ s′}, i.e.,

the set of all enabled outgoing transitions from s, and let ∆(s, tU) = s′ if s
tU→ s′.

Note that in the remainder of the thesis, we assume wlog. that each guard g is a
singleton. This is not a restriction as any local transition (qU , g, q

′
U) ∈ δU where

|g| > 1 can be split into |g| transitions (qU , g1, q
′
U), . . . , (qU , g|g|, q

′
U) where for all

i ≤ |g| : qi ∈ g is a singleton guard.

Analogously to Section 2.1, we can define a path and a run of a counter system.
A path of a counter system is a (finite or infinite) sequence of states x = s1, s2, . . .
such that sm → sm+1 for all m < |x|. A maximal path is a path that cannot be
extended, and a run is a maximal path starting in an initial state. We say that
a run is globally deadlocked if it is finite. Note that every run s1, s2, . . . of the
counter system corresponds to a run of a fixed A||Bn, i.e. the number of processes
does not change during a run. Given a set of error states ERR ⊆ S, an error
path is a finite path that starts in an initial state and ends in ERR.

Example 3.2.2. Figure 3.2 shows the configuration space for one writer and
two copies of the reader process. The initial configuration is s0 = (nw, (2, 0)),

30

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

Model Checker

MERR

M

Refine Constraints

SAT-SolverUnrealizable Restrict M with δ

Deadlock Checker

correct

incorrect:
error sequence E

unsatisfiable satisfiable:

restriction δ′

deadlocked

sequence E ′

deadlock-free: M ′

Figure 3.3: Parameterized repair of concurrent systems

i.e., none of the processes is writing or reading. In s0 the writer can either en-
ter the writing state resulting in the global state s1 = (w, (2, 0)), or one of the
reader processes can enter the reading state resulting in the global state s2 =
(nw, (1, 1)). Furthermore, the configuration space includes the configurations
(nw, (0, 2)), (w, (1, 1)) and (w, (0, 2)) with the depicted transitions. The system
is deadlock-free since it contains no globally deadlocked run.

3.2.2 Parameterized Repair

In the following, we define the parameterized repair problem. Then, we show a
high-level parameterized repair algorithm and discuss its challenges.

Problem 3.2.1. (Parameterized Repair Problem)
Let M = (S, S0,∆) be the counter system for process templates A = (QA, initA, δA),

B = (QB, initB, δB), and a set of error states ERR ⊆ QA×N|B|
0 . The parameter-

ized repair problem is to decide if there exist process templates A′ = (QA, initA, δ
′
A)

with δ′A ⊆ δA and B′ = (QB, initB, δ
′
B) with δ′B ⊆ δB such that the counter system

M ′ for A′ and B′ is globally deadlock-free and does not reach any state in ERR.

If they exist, we call δ′ = δ′A ∪ δ′B a repair for A and B. We call M ′ the
restriction of M to δ′, also denoted Restrict(M, δ′).

Figure 3.3 gives an overview of the parameterized repair algorithm. For a
given counter system M that is based on process templates A and B, the algo-
rithm checks if any error state in ERR is reachable. If the model checker detects
no reachable error state, the counter system M is already correct. Otherwise,
the model checker returns an error sequence E , i.e. one or more error paths that

31

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

start in an initial state in M and end in a state in ERR. Then, the algorithm
refines constraints over A and B such that any error path in E is avoided. These
constraints are forwarded to a SAT-solver to find refinements of A and B that
satisfy the constraint system and avoid any error path in E . The generated re-
striction δ′ = δ′a ∪ δ′b restricts the non-deterministic transition relations of A and
B, i.e., it consists of subsets δ′a ⊆ δa and δ′b ⊆ δb of the local transition relations.
Then, δ′ is used to restrict M . If the SAT-solver is unable to find a restriction,
then the counter system cannot be repaired for ERR. In the next step, the algo-
rithm checks if the restriction δ′ introduced any global deadlocks. The deadlock
checker works similarly to the model checker by checking if any deadlocked state
is reachable rather than an error state. If a deadlock can be detected, a dead-
locked sequence E ′ is encoded into constraints to refine the constraint system.
Otherwise the restricted counter system M ′ is sent to the model checker for the
next iteration.

In Section 3.3, we show how the model checker generates error sequences that
allow us to refine the constraint system to avoid any error path. Furthermore, we
present how the parameterized deadlock checker supplies similar information as
the model checker. In Section 3.4, we show how to encode the supplied informa-
tion from model checking and deadlock detection into constraints such that the
resulting restriction avoids any error path that has already been found. Further,
we present the paramaterized repair algorithm.

3.3 Parameterized Model Checking

In this section, we show how we can efficiently model check counter systems.
Before introducing a parameterized model checking algorithm, we present how
counter systems can be framed as well-structured transition systems (WSTS).
Last, we show how the algorithm can be modified to detect deadlocked states.

3.3.1 Counter Systems as WSTS

For a given set of error states ERR, a counter system M based on process tem-
plates A and B is correct, if for every n, A||Bn reaches no state in ERR. The
standard model checking method, shown in Section 2.4, performs a reachability
analysis to check for finite executions that end in an error state. This method
works for all finite systems. However, a counter system has an infinite state space
since it contains the configuration space of all systems A||Bn. In Section 3.3.2,
we present a parameterized model checking algorithm that works for counter
systems. Therefore, we need to frame counter systems as WSTS. We start by
introducing a well-quasi-order.

32

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

Definition 3.3.1. (well-quasi-order)
Given a set of states S, a binary relation ⪯⊆ S × S is a well-quasi-order (wqo)
if ⪯ is reflexive, transitive, and if any infinite sequence s0, s1, . . . ∈ Sω contains
a pair si ⪯ sj with i < j.

A subset R ⊆ S is an antichain if any two distinct elements of R are incompa-
rable wrt. ⪯. Therefore, ⪯ is a wqo on S iff it is well-founded and has no infinite
antichain.

Example 3.3.1. The ordering ≤ is a wqo on N. However, ≤ is not a wqo on Z,
because the infinite sequence s = 0,−1,−2,−3, . . . is infinitely decreasing. For
s, there is no pair si ≤ sj with i < j.

For well-quasi-orders, we can define the following property which helps us to
find a finite basis for an infinite set:

Definition 3.3.2. (upwards closure)
Let ⪯ be a wqo on S. The upwards closure of a set R ⊆ S, denoted ↑R, is the
set {s ∈ S | ∃s′ ∈ R : s′ ⪯ s}.

We say that R is upwards-closed if ↑R = R. If R is upwards-closed, then we
call B ⊆ S a basis of R if ↑B = R. If ⪯ is also antisymmetric, then any basis of
R has a unique subset of minimal elements. We call this set the minimal basis
of R, denoted minBasis(R).

Example 3.3.2. Consider the wqo ≲ on N2 where ≲ is the component-wise
ordering on vectors. For R = {(2, 1), (1, 3)}, the vector (2, 2) is in the upwards
closure ↑R since (2, 1) ≲ (2, 2), However, (1, 2) /∈ ↑R since (2, 1) ̸≲ (1, 2) and
(1, 3) ̸≲ (1, 2). A minimal basis for ↑R is {(2, 1), (1, 3)}.

In the following, we define if a wqo is compatible with a given system, i.e. if
a wqo can be used to compare different states of the system. For parameterized
systems, a compatible wqo can be used to compare states and their successors
for systems of a different size. Further, this allows us to define a WSTS.

Definition 3.3.3. (compatible)
Given a counter system M = (S, S0,∆), a wqo ⪯ S × S is compatible with ∆ iff
the following holds:

∀s, s′, r ∈ S : if s→ s′ and s ⪯ r then ∃r′ with s′ ⪯ r′ and r →∗ r′.

In Definition 3.3.3, r →∗ r′ denotes that r′ is reachable from r by taking one
or more transitions. We say that ⪯ is strongly compatible with ∆ if the above
holds with r → r′ instead of r →∗ r′.

Definition 3.3.4. (WSTS)
For a given counter system M = (S, S0,∆), (M,⪯) is a well-structured transition
system if ⪯ is a wqo on S that is compatible with ∆.

33

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

(qA, (0, 2))

(qA, (0, 3))

(qA, (2, 3))

⪅⪅

(qB, (0, 2))

̸⪅ (qA, (2, 1))

̸⪅

↑{(qA, (0, 2))}

Figure 3.4: Counter Systems as WSTS with ⪅

The following lemma shows a wqo ⪅ that is compatible with a counter system
M such that (M,⪅) is a WSTS:

Lemma 3.3.1. [36] Let M = (S, S0,∆) be a counter system for process templates
A,B, and let ⪅⊆ S × S be the binary relation defined by:

(qA, c) ⪅ (q′A, c
′)⇔ (qA = q′A ∧ c ≲ c′),

where ≲ is the component-wise ordering of vectors. Then (M,⪅) is a WSTS.

Example 3.3.3. Figure 3.4 illustrates the wqo from Lemma 3.3.1. For R =
{(qA, (0, 2))} the states (qA, (0, 3)) and (qA, (2, 3)) are in ↑R. However, the con-
figuration (qB, (0, 2)) is not in the upwards closure of R since the local state
for process A is in a different state. Further, (qA, (2, 1)) is not in ↑R because
(0, 2) ̸≲ (2, 1).

By framing a counter system as a WSTS, we can represent and compare states
of different systems size. Further, the upwards closure of an infinite set of states
can be represented by a finite minimal basis. With this representation, we can
compute the predecessor of an upwards closure. This is essential for the model
checking algorithm.

Definition 3.3.5. (Predecessor)
Let M = (S, S0,∆) be a counter system and let R ⊆ S. Then the set of immediate
predecessors of R is

pred(R) = {s ∈ S | ∃r ∈ R : s→ r}.

A WSTS (M,⪅) has effective pred-basis if there exists an algorithm that takes
as input any finite set R ⊆ S and returns a finite basis of ↑pred(↑R). For a given
set R ⊆ S that is upwards-closed with respect to ⪅, pred(R) is upwards-closed
iff ⪅ is strongly compatible with ∆.

34

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

Algorithm 1 Parameterized Model Checking

1: procedure ModelCheck(M,ERR)
2: temporarySet ← ERR, E0 ← ERR, i← 1, visistedSet ← ∅
3: //If temporarySet = visitedSet then a fixed point is reached
4: while temporarySet ̸= visitedSet do
5: visitedSet ← temporarySet
6: Ei ← minBasis(↑pred(↑Ei−1))
7: //Check intersection with initial states
8: if Ei ∩ S0 ̸= ∅ then
9: return (False,{E0, . . . , E1 ∩ S0})
10: temporarySet ← minBasis(visitedSet ∪Ei)
11: i← i + 1

12: return (True, ∅)

For a given set of error states R, the model checking algorithm needs to
perform a backwards reachability analysis to check if it can reach an initial state.
Therefore, it is essential to compute pred∗(R) as the limit of the sequence R0 ⊆
R1 ⊆ . . . where R0 = R and Ri+1 = Ri∪pred(Ri). If we have strong compatibility
and effective pred-basis, then we can compute pred∗(R) for any upwards-closed
set R and reachability of arbitrary upwards-closed set is decidable. Lemma 3.3.2
states that we can effectively compute the predecessors for counter systems. This
can be seen in detail in the model checking algorithm in the following Section
3.3.2.

Lemma 3.3.2. [36] Let M = (S, S0,∆) be a counter system for process templates
A and B. Then (M,⪅) has effective pred-basis.

3.3.2 Parameterized Model Checking Algorithm

For a given counter system M = (S, S0,∆), based on process templates A and
B, and a finite basis ERR of the set of error states, the parameterized model
checking algorithm checks if there exists an n ∈ N0, such that an error state is
reachable in A||Bn. The algorithm performs a backwards reachability analysis
and returns an error sequence, from which we can derive concrete error paths.
The following algorithm has been shown to be correct and to terminate [36].

Algorithm 1 shows how to perform parameterized model checking by iter-
atively computing the set of predecessors until it reaches an initial state, or a
fixed point. If a fixed point is reached, then the algorithm returns True, i.e. the
system is safe. Otherwise the procedure returns an error sequence E0, . . . , Ek,
where E0 = ERR, ∀0 < i < k : Ei = minBasis(↑pred(↑Ei−1)), and Ek =
minBasis(↑pred(↑Ek−1)) ∩ S0. Intuitively, every Ei contains a minimal basis of
the states that can reach ERR in i steps.

35

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

nw w

t1 : {r}
t2 : {nr}

t3 : {r}
t4 : {nr}

(a) Writer

nr r

t5 : {nw}
t6 : {nw}

t7 : {nw}

(b) Reader

↑{(w, (0, 1))}↑ERR :

�������XXXXXXX(nw, (1, 1)),↑{(nw, (0, 1)),↑pred(↑E0): (w, (0, 1))}

������XXXXXX(nw,(0,2)), (nw,(0,1)),(nw,(1,0)),
∈ S0

↑{������XXXXXX(w,(1,1)),↑pred(↑E1) : ������XXXXXX(nw,(1,1)), (w,(0,1))}

t2t1 t3

t6t7t5t4 t1 t2 t3

(c) Predecessor Computation

Figure 3.5: Parameterized Model Checking

Example 3.3.4. Consider the writer-reader system in Figures 3.5a and 3.5b.
We assume that the error states are all states where the writer is in w while at
least one reader is in the reading state r, i.e., ↑ERR = {(w, (i0, i1)) | (w, (0, 1)) ⪅
(w, (i0, i1))}. A finite basis for the error states is ERR = E0 = {(w, (0, 1))}.
For E0, the algorithm iteratively computes the set of predecessors, as described
in Lemma 3.3.2. Figure 3.5c depicts the predecessor computation. States of ↑E0

can be reached by taking one of the local transitions t1, t2 or t3, i.e., ↑pred(↑E0)
= ↑{(nw, (0, 1)), (nw, (1, 1)), (w, (0, 1))}. A minimal basis for the set of prede-
cessors is E1 = {(nw, (0, 1)), (w, (0, 1))}, indicated by pruning the states. Since
E1 contains no initial state and the algorithm has not reached a fixed point, we
continue by computing the next set of predecessors for ↑E1. States of ↑E1 can be
reached by taking one of the local transitions ti for 0 < i ≤ 7. A minimal basis is
E2 = {(nw, (1, 0)), (nw, (0, 1)), (w, (0, 1))}. Since E0 ∩ S0 ̸= ∅, an error state is
reachable and the error sequence {E0, E1, {(nw, (1, 0))}} is returned.

3.3.3 Deadlock Detection

When repairing concurrent systems, it needs to be guaranteed that a repair does
not introduce a deadlock. In the following, we show how the paramaterized model
checking algorithm can be adapted to detect deadlocks.

36

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

First, note that that we cannot directly use the model checking algorithm to
check reachability of deadlocked state. To see this, let s = (qA, c) be a deadlocked
state. Thus, c(i) = 0 for every qi that appears in a guard of an outgoing local
transition from s. For a global state s′ = (q′A, c

′) with s ⪅ s′ where c′(i) > 0
for one of these qi, some transition for s′ is enabled. Thus, s′ is not deadlocked
and the set of deadlocked set is not upwards-closed under ⪅ from Section 3.3.1.
Hence, we need a refined wqo for deadlock detection. We assume wlog. that δB
does not contain any transition where qi is guarded by qi, i.e. a transition of the
form (qi, {qi}, qj). This is not a restriction since any system can be transformed
into one that satisfies the assumption, with a linear blowup in the number of
states, and preserves reachability properties.

Definition 3.3.6. (Refined wqo)

Let ≲0⊆ N|B|
0 ×N|B|

0 where c ≲0 c
′ iff c ≲ c′ and ∀i ≤ |B| : (c(i) = 0)⇔ (c′(i) =

0). Then, the refined wqo ⪅0⊆ S × S for deadlock detection is defined as:

(qA, c) ⪅0 (q′A, c
′)⇔ (qA = q′A ∧ c ≲0 c

′).

Note that any set of deadlocked states is upwards-closed with respect to ⪅0.

Example 3.3.5. Consider the states s0 = (qA, (0, 2, 1)), s1 = (qA, (0, 2, 3)) and
s2 = (qA, (1, 2, 3)). It holds that s0 ⪅ s1 and s0 ⪅ s2. Further, s0 ⪅0 s1.
However, s0 ̸⪅0 s2, since at the first position the value for the vector for s2 is not
0. Thus, ⪅0 additionally checks if for every position, the value of the state vector
for process B does not differ if it is 0.

The following lemma states that a counter system is a WSTS for ⪅0.

Lemma 3.3.3. [36] Let M = (S, S0,∆) be a counter system for process templates
A and B. Then, (M,⪅0) is a WSTS.

As shown in Section 3.3.1, for a given set R ⊆ S that is upwards-closed
with respect to ⪅, pred(R) is upwards-closed iff ⪅ is strongly compatible with ∆.
Since ⪅0 is not strongly compatible with ∆, pred(R) is not upwards closed, for any
upwards-closed set R with respect to ⪅0. Thus, we cannot use upwards-closed
sets for computing pred∗(R) when checking reachability of deadlocked states.
Therefore, we introduce an overapproximation of pred(R) that is upwards-closed
with respect to ⪅0. Furthermore, the following overapproximation is safe in
the sense that every state in the overapproximation is backwards reachable in a
number of steps from R.

Definition 3.3.7. (O-Predecessor)
Let M = (S, S0,∆) be a counter system for process templates A,B and let R ⊆ S.
Then the set of O-predecessors of R is

opred(R) = pred(R) ∪ {(qA, c) ∈ S | ∃(q′A, c′) ∈ R, tB = (qi, g, qj) ∈ δB :

37

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

(qA, c)
tB→+(q′A, c

′) ∧ (c(j) = 0 ∨ c′(i) = 0)},

where (qA, c)
tB→+(q′A, c

′) denotes that (q′A, c
′) is reachable from (qA, c) by executing

the local transition tB one or more times.

Lemma 3.3.4. [36] Let R ⊆ S be upwards-closed with respect to ⪅0. Then
opred(R) is upwards-closed with respect to ⪅0.

A WSTS (M,⪅0) has effective opred-basis if there exists an algorithm that
takes as input any finite set of set R ⊆ S and returns a finite basis of ↑opred(↑R).
Lemma 3.3.5 shows how to compute a basis of ↑opred(↑R) from a basis R.

Lemma 3.3.5. [36] Let M = (S, S0,∆) be a counter system for process templates
A and B. Then (M,⪅0) is a WSTS with effective opred-basis.

Based on these results, Theorem 3.3.1 shows decidability for deadlock detec-
tion in disjunctive systems.

Theorem 3.3.1. [36] Deadlock detection in disjunctive systems is decidable in
NEXP-TIME.

By modifying Algorithm 1, we can perform deadlock detection in a counter
system M . Instead of a set of error states ERR, we pass a basis of the deadlocked
states. In Line 6, the overapproximation opred is computed instead of pred, as
described in Lemma 3.3.5. Furthermore, the computation of a minimal basis
needs to be done with respect to the refined wqo ⪅0 in Lines 6 and 10. By
following the proof idea of Theorem 3.3.1, the algorithm terminates and runs in
2EXPTIME.

3.4 Parameterized Repair Algorithm

In this section, we present a parameterized repair algorithm that interleaves the
backwards parameterized model checking algorithm from Section 3.3 with a for-
wards reachability analysis to generate candidate repairs.

3.4.1 Reachable Error Sequence

For a given counter system M of process templates A = (QA, initA, δA) and
B = (QB, initB, δB), and a set of error states ERR, a parameterized repair al-
gorithm generates a refinement δ′ of M such that no state in ERR is reach-
able iff the system can be repaired, i.e., there exists a counter system M ′ of
A′ = (QA, initA, δ

′
A) and B′ = (QB, initB, δ

′
B) that reaches no state in ERR. As

described in Section 3.2.2, a parameterized model checker is used to generate
error sequences. By performing a forward reachability analysis, we can extract
concrete reachable error paths. Before defining a reachable error sequence, we
need to define the set of immediate successors.

38

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

Definition 3.4.1. (Successor)
Let M = (S, S0,∆) be a counter system and R ⊆ S. Then the set of immediate
successors of R is

Succ(R) = {s′ ∈ S | ∃s ∈ R : s→ s′}.

For s ∈ S, let ∆local(s, R) = {tU ∈ δ | tU ∈ ∆local(s) ∧∆(s, tU) ∈ R}.

Definition 3.4.2. (Reachable error sequence)
Given an error sequence E0, . . . , Ek, the reachable error sequenceRE = RE0, . . . , REk

is defined by REk = Ek and REi−1 = Succ(REi) ∩ ↑Ei−1 for 1 ≤ i ≤ k.

Note that by definition, Ek only contains initial states. Intuitively, RE rep-
resents a set of concrete error paths of length k since each REi is a set of states
that can reach ↑ERR in i steps, and REi is reachable from S0 in k − i steps.

Example 3.4.1. Consider Example 3.3.4 with the counter system for the process
templates in Figure 3.5 and ERR = {(w,(0,1))}. The parameterized model check-
ing algorithm returned the error sequence E0, E1, E2, where E0 = ERR, E1 =
{(nw, (0, 1)), (w, (0, 1))} and E2 = {(nw, (1, 0))}. For this error sequence, we can
compute the reachable error sequence RE = RE0, RE1, RE2 where RE2 = E2.
Furthermore, RE1 = Succ(RE2) ∩ ↑E1 = {(nw, (0, 1))} and RE0 = Succ(RE1) ∩
↑E0 = {(w, (0, 1))}.

3.4.2 Constraint Solving for Candidate Repairs

The parameterized model checking algorithm generates candidate repairs until
the counter system is correct. Each candidate repair has to avoid all error paths
that have been discovered so far. Therefore, every reachable error sequence is
encoded into constraints such that the corresponding concrete error paths are
unreachable. The SAT-based generation of candidate repairs is guided by con-
straints over the local transitions δ as atomic propositions of the underlying pro-
cess process templates. A satisfying assignment of the constraints corresponds to
the candidate repair δ′, where only transition that are assigned true remain in δ′.

Algorithm 2 shows how to build constraints for a given reversed reachable
error sequence RE = REk, . . . , RE0 such that a candidate repair avoids error
paths of RE . The algorithm performs a forward reachability analysis for every
initial state s ∈ REk to build constraints for each concrete error path that starts
in s. An error path is unreachable if for any step, all local transitions that lead
to the successor, are removed by the candidate repair.

Example 3.4.2. Consider the reversed reachable error sequenceRE = RE2, RE1,
RE0 from Example 3.4.1. A candidate repair δ′ has to remove local transitions

39

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

Algorithm 2 Build Constraints

1: //RE is a reachable error sequence
2: procedure BuildConstraints(RE)
3: constraint← true
4: //build constraints for each error path starting in the initial state s
5: for s ∈ RE [0] do
6: //RE [1 :] is a list obtained by removing the first element from RE
7: constraint ← constraint ∧ BuildConstraint(s,RE [1 :])

8: return constraint
9:

10: procedure BuildConstraint(s,RE)
11: if RE [1 :] isEmpty then
12: //if tU ∈ ∆local(s) leads to RE [0], delete it
13: return

∧
tU∈∆local(s,RE[0]) ¬tU

14: else
15: //if tU leads to RE [0], delete tU or ensure unreachability for the
16: //remaining error sequence RE [1 :] in ∆(s, tU)
17: return

∧
tU∈∆local(s,RE[0])(¬tU∨BuildConstraint(∆(s, tU),RE [1 :]))

from the process templates in Figures 3.5a and 3.5b such that all concrete er-
ror paths of RE are unreachable. Since RE2 only contains one initial state,
i.e. s0 = {(nw, (1, 0))}, the algorithm only checks for error paths starting in s0.
s0 can reach a state of RE1 by taking the local transition t5 resulting in state
s1 = {(nw, (0, 1))}. For s1, the error state {(w, (0, 1))} is reachable by taking t1.
Thus, the algorithm generates the constraint ¬t5 ∨ ¬t5 and a candidate repair δ′

has to remove at least t1 or t5.

To avoid the construction of candidate repairs that violate the totality as-
sumption, i.e. every local state in QA ∪QB has at least one local outgoing tran-
sition, every repair has to additionally satisfy the following constraint:

TRConstr =
∧

qA∈QA

∨
tA∈δA(qA)

tA ∧
∧

qB∈QB

∨
tB∈δA(qB)

tB

In Example 3.4.2, a candidate repair δ′ is not allowed to delete t5, because
otherwise δ′ would remove all local transitions of the local state nr. Furthermore,
the constraint system can be extended with user-designed constraints such that
a repair conforms with the designer’s requirements. For example, the designer
could add constraints to ensure that certain states remain reachable in the repair.

40

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

Algorithm 3 Parameterized Repair

1: procedure ParameterizedRepair(M,ERR,initConstraint)
2: M ′ ←M , accumConstraint ← initConstraint, isCorrect ← False
3: // loop until a repair is found or unrealizability is detected
4: while !isCorrect do
5: (isCorrect, [E0, . . . , Ek]) ← ModelCheck(M ′, ERR)
6: if !isCorrect then
7: //Ek contains only initial states
8: REk ← Ek, i← k − 1
9: while i ̸= 0 do
10: REi ← Succ(REi+1) ∩ ↑Ei

11: i← i− 1

12: //for every state in REk compute the corresponding constraints
13: newConstraint ← BuildConstraints([REk, . . . , RE0])
14: //append current constraints to previous iterations’ constraints
15: accumConstraint ← accumConstraint ∧ newConstraint
16: (δ′,isSat) ← SAT(accumConstraint)
17: if !isSat then
18: return Unrealizable
19: compute a new candidate using δ′

20: M ′ ← Restrict(M, δ′)
21: else
22: //repair is found
23: return δ′

3.4.3 Parameterized Repair Algorithm

Algorithm 3 shows how to construct a parameterized repair for a given counter
system M , a set of error states ERR and initial boolean constraints initConstraint
on the local transition relations including the totality constraint TRConstr. The
algorithm interleaves the backwards model checking algorithm with a forwards
reachability analysis and the computation of candidate repairs. The algorithm
starts by using a parameterized model checker to generate an error sequence in
Line 5 following Algorithm 1. After computing the reachable error sequence RE ,
the constraint system is updated with the constraints generated by Algorithm 2 in
Line 13. Then, a SAT-solver is used to find a candidate repair δ′ for the updated
constraint system in Line 16. Then these steps are repeated for the restricted
counter system with respect to δ′. The algorithm returns either a repair if the
model checker detects no more error sequences or Unrealizable to denote that
no repair exists. The algorithm always terminates as shown in [36]. A detailed
example of the parameterized model checking algorithm is shown in Example
3.5.1.

41

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

Note that Algorithm 3 does not include a deadlock detection to avoid repairs
that introduce deadlocks. However, it can be extended with a subprocedure for
deadlock detection based on the approach in Section 3.3.3. Then, the subpro-
cedure is called in an interleaving way with the parameterized model checker as
described in Section 3.2.2.

The following Theorems 3.4.1 and 3.4.2 state that Algorithm 3 is sound and
complete.

Theorem 3.4.1. [36](Soundness). For every repair δ′ returned by Algorithm 3:

• Restrict(M, δ′) is safe, i.e., ↑ERR is unreachable, and

• the transition relation of Restrict(M, δ′) is total.

Theorem 3.4.2. [36](Completeness). If Algorithm 3 returns Unrealizable, then
the paramaterized system has no repair.

3.5 Extensions and Limitations

In this section, we discuss how the presented parameterized repair approach can
be extended and modified to repair systems that go beyond disjunctive systems,
for general safety properties. Furthermore, we show the limitations of this ap-
proach and state the open problems that are solved in the remainder of the thesis.

3.5.1 Beyond Reachability

The presented Algorithm 3 can also be used for repairing general safety properties
based on the automata-theoretic model-checking approach described in Section
2.4. To this end, the safety property φ is encoded into a bad-prefix automaton
A¬φ that accepts all runs of the counter system A||Bn that violate φ. We build
the product of the original system M with the automaton A¬φ and explicit copies
of B that appear in φ. By defining a refined wqo that additionally checks if the
automaton is in the same local state for two global states, we can run Algorithm
1 to check for executions that violate φ. Analogously, we can modify the repair
algorithm that generates candidate repairs with respect to the refined wqo to find
a repair that satisfies φ.

Example 3.5.1. Consider the parameterized system consisting of one writer and
reader-processes from Figure 2.1. Assume that the local transition (nr, {nw}, r), is
an unguarded transition instead, i.e., the transition (nr, QA∪QB, r). We want to
repair the system for the general safety property φ = ((w ∧ nr1)→ (nr1W nw))
from Example 2.3.1. Figure 2.4 depicts the bad-prefix automaton A equivalent
to ¬φ. We run the parameterized repair algorithm on the product M × B × A
and the error states {((−,−, (∗, ∗)), qe)}, where (−,−) means any writer and any

42

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

reader state, and ∗ means 0 or 1. Thus, the system is not allowed to have an
execution reaching the error state qe of the finite automaton. The model checker
may return the following error sequences:

E0 = {((−,−, (∗, ∗)), qe)}
E1 = {((w, r1, (0, 0)), q1)}
E2 = {((w, nr1, (0, 0)), q0), ((w, nr1, (0, 1)), q0), ((w, nr1, (1, 0)), q0)}
E3 = {((nw, nr1, (0, 0)), q0), ((nw, nr1, (0, 1)), q0), ((w, r1, (0, 0)), q0),

((w, r1, (0, 1)), q0), ((w, r1, (1, 0)), q0)}
After updating the constraint system, the SAT-solver finds out that the error
sequence can be avoided by removing the local transitions (nr, {nr}, r), (nr, {r}, r)
and (nr, {w}, r). The next call to the model checker assures that the restricted
system is safe. Note that some states were omitted from error sequences in this
example for a simpler presentation.

However, the presented approach is not able to guarantee any liveness prop-
erties, like termination or the absence of undesired loops. The main problem is
that liveness checking cannot be reduced to a reachability problem. For liveness
properties, we need a parameterized model checking algorithm that checks for
executions with an infinite cycle violating the property. In Chapter 4, we present
a parameterized model checking algorithm for liveness properties and show how
the parameterized repair algorithm can be modified to include liveness repair.

3.5.2 Beyond Disjunctive Systems

The parameterized repair algorithm can be extended to other system classes that
can be framed as WSTS. These systems include conjunctive systems, rendezvous
systems and systems based on broadcast protocols. For synchronous transitions,
we have to modify the initial constraint TRConstr to ensure that the repair is
total for pairwise rendezvous and broadcast systems. Furthermore, a modified
version of the procedure BuildConstraints has to be used when a transition
relation comprises synchronous actions. When repairing synchronous systems,
the main challenge is how to exclude deadlocks. While deadlock detection is de-
cidable for rendezvous system by reduction to reachability in vector addition sys-
tems (VASS) [17, 31], Theorem 3.5.1 shows that deadlock detection for broadcast
protocols is undecidable. However, for the over-approximation of lossy broadcast
systems, deadlock detection is decidable [18].

Theorem 3.5.1. [36] Deadlock detection in broadcast protocols is undecidable.

3.5.3 Limitations

If a given parameterized system cannot be repaired, the presented approach offers
no additional feedback. Instead, the designer has to add more non-determinism or

43

CHAPTER 3. PARAMETERIZED REPAIR OF GUARDED PROTOCOLS
FOR SAFETY PROPERTIES

allow for more communication between processes, and run the algorithm again.
This may be a non-trivial and exhausting task. Therefore, in Chapter 5, we
present an operation-based repair approach, where the repair algorithm can also
introduce more communication between processes. Since the designer usually
wants a repair that is close to the implemented system, we introduce minimal
repairs in Chapter 4. Intuitively, a minimal repair is a repair that only applies
changes that are necessary. Since the generation of minimal repairs is done with
constraints on the local transitions, the presented repair algorithm can easily be
modified to minimally repair a system as well.

44

Chapter 4

Refinement-Based Parameterized
Repair of Guarded Protocols for
Liveness Properties

In this chapter, we show how to modify the parameterized repair algorithm from
Jacobs, Sakr and Völp [36] to minimally repair guarded protocols for liveness
properties. We introduce cutoffs to reduce the paramaterized model checking
problem to model checking of finite state systems. Furthermore, we show how
to extend the constraint system to generate minimal candidate repair that are
globally deadlock-free. Last, we discuss the limitations of our approach. We start
by giving a motivating example.

4.1 Motivating Example

Consider the parameterized system for one writer and reader processes from Fig-
ure 2.1. As shown in Example 3.5.1, the system is safe with respect to the prop-
erty φsafe = ((w∧nr1)→ (nr1W nw)). However, possible system executions still
include runs where the writer eventually stays in either the writing state w or in
the initial state nw forever. This may not satisfy the designer’s intent. By adding
the additional property φlive = nw∧ w, the designer wants to repair the
system and to guarantee that the writer does not eventually remain in the same
state forever. However, the existing repair approach presented in Chapter 3 does
not work for liveness properties. Since every property can be decomposed into a
safety and a liveness property by Theorem 2.2.1, we need a parameterized repair
algorithm for liveness properties. In the following, we show how we can modify
the existing repair approach such that we can repair parameterized systems for
liveness properties. A repair for φlive is shown in Figure 4.1. By removing the
transition (w, r,w), the writer cannot stay in w forever. Further, by removing the
transitions (r, nw, r), (r, nw, nr), (r, nr, nr) and (r, r, nr), the writer has to eventu-

45

CHAPTER 4. REFINEMENT-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS FOR LIVENESS PROPERTIES

nw w

(a) Writer

nr r

{nw}

{w}

(b) Reader

Figure 4.1: A possible repair for φlive

ally change its current state. Thus, the writer cannot stay in the writing state w
or in the initial state nw forever at some point. Another refinement which would
have also repaired the system with respect to φlive, could additionally delete the
transition (nw, r,w). Then, the process templates would still be total, the system
would not be deadlocked and the system satisfies φlive. However, the designer
is usually interested most in repairs that allow for as much communication as
possible. Therefore, we show how to minimally repair a system such that no
transition is removed that is not responsible for an incorrect execution.

4.2 Problem Statement

In this section, we define the parameterized minimal repair problem and give
a high-level overview about the modifications of the parameterized repair algo-
rithm such that it can repair guarded protocols for liveness properties. We start
by defining a minimal repair.

In the following, we only consider disjunctive systems. In Section 4.6, we
explain how the repair algorithm can be modified to repair other system classes
where liveness checking is decidable. Liveness properties are formulated as a pa-
rameterized specification φ. As defined in Section 2.2, φ is an LTL\X formula over
atomic propositions from QA and indexed propositions from QB×{1, . . . , k}. The
next-time operator has to be excluded such that liveness checking of disjunctive
systems is decidable [13]. Furthermore, the explicit representation of parame-
terized systems from Section 2.1 is used rather than the counter system, since
our approach relies on techniques that use the explicit representation. These
techniques include model checking of finite-state systems.

Definition 4.2.1. (Minimal Repair)
Given the process templates A = (QA, initA, δA) and B = (QB, initB, δB), and
a parameterized specification φ defined over atomic propositions from QA and
indexed propositions from QB × {1, . . . , k}. A set of transitions δ′ = δ′A ∪ δ′B
with δ′A ⊆ δA and δ′B ⊆ δB is a repair for A,B and φ iff ∀n ≥ k : A′||B′n ⊨ φ,
A′||B′n is globally deadlock-free, and A′, B′ are total for A′ = (QA, initA, δ

′
A) and

B′ = (QB, initB, δ
′
B). A repair δ′ is minimal iff there exists no repair δ′′ with

46

CHAPTER 4. REFINEMENT-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS FOR LIVENESS PROPERTIES

nw w

{r}, {nr}

{r}, {nr}

(a) Writer

nr r

{nw}, {w}

{nw}
{w}

(b) Reader

Figure 4.2: Process templates used in Lemma 4.2.1

|δ′′| > |δ′|.

If δ′ is a minimal repair, we also say that δ′ minimally repairs A and B for φ.
Intuitively a repair is minimal if there is no repair that removes less transitions,
i.e. only transitions are removed that are responsible for incorrect executions.

Example 4.2.1. Consider the process templates in Figure 2.1 and the live-
ness property φ = w. The system violates the specification since there are
executions where the writer remains in the initial state forever, i.e., for one
reader process the run ((nw,nr),(nw,r))ω. A repair for φ is δ′ = δ′A ∪ δ′B with
δ′A = δA\{(w,r,w)} and δ′B = {(nr,nw,r),(r,w,r)}. However, δ′ is not a minimal
repair since there exists the repair δ′′ = δA∪δ′B with |δ′′| > |δ′|. In fact, the repair
δ′′ is minimal.

While a minimal repair ensures that only transitions are removed that are
responsible for an incorrect execution, the following lemma states that minimal
repairs are not unique.

Lemma 4.2.1. There exist process templates A,B, a parameterized specification
φ and minimal repairs δ1, δ2 for A,B, and φ with δ1 ̸= δ2.

Proof. Let A = (QA, nw, δA) and B = (QB, nr, δB) with QA = {nw,w}, QB =
{nr, r}, δA = {(nw, {nr},w), (nw, {r},w), (w, {nr}, nw), (w, {r}, nw)} and δB =
{(nr, {nw}, r), (nr, {w}, r), (r, {w}, r), (r, {nw}, nr)}. Figure 4.2 illustrates the pro-
cess templates where A is the writer and B the reader. For φ = w, ∀n ≥
1 : A||Bn ⊭ φ since there exists a run where only process B1 moves by tak-
ing the transitions (nr, {nw}, r) and (r, {nw}, nr). Thus, w never holds. δ1 =
δA∪ δB\{(nr, {nw}, r)} and (r, {nw}, nr) are minimal repairs for A,B and φ since
for both restrictions a B-process eventuall can only move when A is in w. Since
δ1 ̸= δ2, minimal repairs are not necessarily unique.

Before giving an overview about the modifications to the repair algorithm from
Chapter 3 such that it can generate minimal repairs for parameterized systems
for liveness properties, we define the parameterized minimal repair problem.

47

CHAPTER 4. REFINEMENT-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS FOR LIVENESS PROPERTIES

Model Checker

cutoff cA,Bφ

A||Bc ⊨ φ

Refine Constraints
————————
• initial constraint
• constraint for E
• cost constraint

SAT-SolverUnrealizable
Restrict

A||Bc with δ

Deadlock Checker

correct

incorrect:
error sequence E k := 1

cost k

unsatisfiable:

k = max

satisfiable:

restriction δ′

deadlocked

sequence E ′

deadlock-free: A′||B′c

unsatisfiable:
k < max:
k = k + 1

Figure 4.3: Parameterized minimal repair for liveness properties

Problem 4.2.1. (Parameterized Minimal Repair Problem)
Given the process templates A = (QA, initA, δA) and B = (QB, initB, δB), and
a parameterized specification φ defined over atomic propositions from QA and
indexed propositions from QB × {1, . . . , k}. The parameterized minimal repair
problem is to decide if there exists a minimal repair δ′ = δ′A ∪ δ′B for A,B and φ.

Figure 4.3 shows a high-level overview about the modifications to the repair
algorithm such that it can minimally repair disjunctive systems for liveness prop-
erties. The modifications preserve the general structure of the repair approach.
Instead of giving a set of error states as input, the algorithm is given a param-
eterized specification φ expressing a liveness property. Furthermore, the inputs
include the process templates A,B and a cutoff c. A cutoff c is a bound that
ensures that if the system A||Bc satisfies φ then ∀n ≥ c : A||Bn ⊨ φ. In Sec-
tion 4.3.1, cutoffs are defined and it is showed how to compute a cutoff for a
given specification φ and process templates A,B. Cutoffs allow to reduce the
parameterized model checking problem to model checking the finite-state sys-
tem A||Bc. By replacing the parameterized model checker with a traditional
finite-state model checker, the repair algorithm from Chapter 3 can repair pa-
rameterized systems for liveness properties. By extending the constraint system,
minimal repairs can be constructed. Therefore, the refined constraint system in-
cludes a cost constraint for a given cost k, that counts the number of removed

48

CHAPTER 4. REFINEMENT-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS FOR LIVENESS PROPERTIES

transitions. If there exists no repair that deletes at most k many transitions
then the cost bound is increased and the constraints are refined. A maximal cost
bound ensures that the algorithm terminates if there exists no repair. If a repair
for bound k is found by the SAT-solver, the process templates are restricted and
forwarded to the deadlock checker. Deadlock detection can be done using the
techniques explained in Section 3.3.3. The remaining steps work analogously to
the existing approach presented in Section 3.2.2.

4.3 Parameterized Model Checking for Liveness

Properties

In this section, we show how to model check paramaterized systems for liveness
properties. We reduce parameterized model checking to model checking finite-
state systems by introducing cutoffs.

4.3.1 Cutoff

A common approach for parameterized model checking is to reduce the problem
to model checking cutoff-sized systems. The definitions are taken from Jacobs
and Sakr [35].

Definition 4.3.1. (Cutoff)
Given a class of process templates T , and a class of properties P . A cutoff is a
number c ∈ N such that for all A,B ∈ T , φ ∈ P and n ≥ c:

A||Bn ⊨ φ⇔ A||Bc ⊨ φ.

Intuitively, a cutoff is a number c that guarantees that a property φ that
is satisfied or violated in the system A||Bc, is also satisfied or violated in any
system A||Bn with n ≥ c. Note that the existence of a cutoff implies that the
parameterized model checking and parameterized deadlock detection problems
are decidable iff model checking and deadlock detection for their cutoff-sized
systems are decidable.

Let c be a cutoff for process templates A = (QA, initA, δA), B = (QB, initB, δB)
and the paramaterized specification φ. Then, by Definitions 4.2.1 and 4.3.1 it
follows that if δ is a minimal repair for process templates A,B and φ, then there
exists no n ≥ c and δ′ = δ′A ∪ δ′B with δ′A ⊆ δA, δ′B ⊆ δB and |δ′| < |δ| such
that A′||B′n ⊨ φ for A′ = (QA, initA, δ

′
A) and B′ = (QB, initB, δ

′
B).Intuitively, this

states that if δ is a minimal repair for the cutoff-sized system A||Bc then δ is
a minimal repair for all systems A||Bn with n ≥ c and vice versa. Note that
this does not hold for systems A||Bm with m ≤ c since for a small m, it may be
sufficient to remove fewer transitions.

49

CHAPTER 4. REFINEMENT-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS FOR LIVENESS PROPERTIES

The following theorem, shows a cutoff for model checking disjunctive systems
for parameterized specifications.

Theorem 4.3.1. [21] For any disjunctive system based on process templates A
and B, and any parameterized specification φ over local runs of A and k copies
of B, a cutoff is |QB|+ k + 1.

Note that for disjunctive systems, there exist more and better cutoffs as shown
by Außerlechner et al. [6], and Jacobs and Sakr [35].

4.3.2 Parameterized Model Checking Algorithm

By reducing the parameterized model checking problem for liveness properties to
model checking of cutoff-sized systems, we can use the model checking approach
presented in Section 2.4. For given process templates A,B and the parameterized
specification φ, we compute a cutoff c, obtained by Theorem 4.3.1. Then, the
product of the system A||Bc and the nondeterministic Büchi automaton A¬φ
for the negated formula is built. By performing a nested depth-first search, the
algorithm checks for a reachable run that contains a cycle visiting an accepting
state of A¬φ. Then, this run visits an accepting state infinitely often and the
specification is violated, i.e. A||Bc ⊭ φ. This error run can then be returned by
the model checking algorithm to obtain an error sequence. Note that this error
sequence is a reachable error sequence s0, . . . , si, si+1, . . . , sj with si+1 = sj where
∀0 ≤ k ≤ j : sk ∈ QA× (QB)c. This sequence represents an infinite run violating
φ, where s0, . . . , si is a finite path that reaches the cycle (si+1, . . . , sj−1)

ω. If the
algorithm detects no accepting cycle, the system satisfies φ, i.e., A||Bc ⊨ φ.

4.4 Parameterized Minimal Repair

In this section, a modified version of Algorithm 3 is presented that minimally
repairs disjunctive systems for liveness properties. We start by introducing the
constraints to generate candidate repairs that only remove a bounded number of
transitions.

4.4.1 Constraint Solving for Minimal Candidate Repairs

A minimal repair for given process templates A,B and a parameterized specifica-
tion φ removes exactly those transitions that lead to violating runs. To generate
a candidate repair that only removes at most k transitions for a given bound k,
the constraint system needs to be extended with constraints that guarantee the
deletion of at most k transitions. By increasing the cost bound, minimal candi-
date repairs can be constructed.

50

CHAPTER 4. REFINEMENT-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS FOR LIVENESS PROPERTIES

∃{costc,i|c ∈ {0, . . . , k + 1}, i ∈ {1, . . . ,m}} : ϕcost

ϕcost =
∧

i∈{1,...,m}c≤k

delTransi,c ∧ notDelTransi,c ∧ ¬costk+1,i

delTransi,c =

{
¬ti → cost1,i if i = 1

costc,i−1 ∧ ¬ti → costc+1,i if i > 1

notDelTransi,c =

{
ti → cost0,i if i = 1

costc,i−1 ∧ ti → costc,i if t > 1

Figure 4.4: The constraint ϕcost ensures that at most k transitions are removed.

Figure 4.4 shows the constraint systems that guarantees that at most k-
many transitions are removed by the candidate repair. Wlog. assume that A =
(QA, initA, {t1, . . . , tn}) and B = (QB, initB, {tn+1, . . . , tm}). By using an implicit
ordering over the local transitions of A and B, the constraint system counts the
number of deleted local transitions. The variable costc,i is true if c-many transi-
tions of {t1, . . . , ti} are deleted so far. This bookkeeping is done by the constraints
delTransi,c and notDelTransi,c. To bound the number of removed transitions by
k, ϕcost requires that costk+1,i is false for all transitions.

4.4.2 Parameterized Minimal Repair Algorithm

For given process templates A,B, a parameterized specification φ and initial
constraints initConstraint, Algorithm 4 shows how to construct a minimal re-
pair. The algorithm is a modified version of Algorithm 3 that also works for
liveness properties. Note that initConstraint contains totality constraints and
can contain further user-designed constraints. The algorithm starts by comput-
ing a cutoff c for A,B and φ following the computation in Theorem 4.3.1. By
model checking the cutoff sized-system A||Bc in Line 7, an error sequence is gen-
erated iff one exists. Note that the generated error sequence is a reachable error
sequence where each set is a singleton. If the model checker detects a violating
run, the constraint system is updated with constraints to avoid reachability of
the generated error sequence by the candidate repair (Line 10). By increasing
the number currentCost, the algorithm checks for candidate repairs that remove
at most currentCost-many transitions (Lines 13 - 24). In Line 16, the constraint
system is updated with the corresponding cost constraints, following the con-
struction in Figure 4.4. If the SAT-Solver does not find a candidate repair for the
current bound currentCost, currentCost is increased and the algorithm checks
for a candidate repair for the updated bound. Otherwise, the process templates

51

CHAPTER 4. REFINEMENT-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS FOR LIVENESS PROPERTIES

Algorithm 4 Parameterized Minimal Repair

1: procedure ParameterizedMinimalRepair(A,B, φ,initConstraint)
2: A′ ← A, B′ ← B, accumConstraint ← initConstraint, isCorrect ← False
3: // compute the cutoff
4: cutoff ← ComputeCutoff(A,B, φ)
5: // loop until a minimal repair is found or unrealizability is detected
6: while !isCorrect do
7: (isCorrect, [RE0, . . . , REk]) ← ModelCheck(A′, B′, cutoff, φ)
8: if !isCorrect then
9: //for every state in REk compute the corresponding constraints
10: newConstraint ← BuildConstraints([REk, . . . , RE0])
11: //append current constraints to previous iterations’ constraints
12: accumConstraint ← accumConstraint ∧ newConstraint
13: currentCost ← 1, candidateFound ← False
14: // check for a candidate repair that only removes k transitions
15: while currentCost ≤ maxCostBound(A,B) do
16: costConstraint ← BuildCostConstr(A,B, currentCost)
17: (δ′,isSat) ← SAT(accumConstraint ∧ costConstraint)
18: if !isSat then
19: currentCost ← currentCost+1
20: else
21: candidateFound ← True, (A′, B′)← Restrict(A,B, δ′)
22: break
23: if !candidateFound then
24: return Unrealizable
25: else
26: //repair is found
27: return δ′

are restricted with respect to the found candidate repair and the model checker
checks for correctness of the restricted system. If the SAT-solver is unable to find
a repair even for the maximal bound maxCostBound for A and B, the system
cannot be repaired and the algorithm returns Unrealizable. A trivial maximal
bound is |δA| + |δB|, that allows a repair to remove all transitions. A more re-
fined one is |δA|+ |δB| − |QA| − |QB| which still guarantees the restricted process
templates to be total. By introducing a maximal bound for deleted transitions,
termination of the algorithm follows from [36].

Note that Algorithm 4 does not include a deadlock detection to avoid repairs
that introduce deadlocks. However, the algorithm can be extended with a dead-
lock detector to generate repairs that are deadlock-free, following the approach
in Section 3.3.3.

52

CHAPTER 4. REFINEMENT-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS FOR LIVENESS PROPERTIES

∃{reachs|s ∈ S} : ϕdeadlock-free

ϕdeadlock-free = reachinitS ∧
∧
s∈S

Reachs

Reachs = reachs → (
∨

t∈δA∪δB

ExistsSuccs,t) ∧ (
∧

s′∈S,t∈δA∪δB

Succs,t,s′)

ExistsSuccs,t =

{
t if ∃s′ ∈ S ′ : (s, t, s′) ∈ ∆

⊥ else

Succs,t,s′ =

{
t→ reachs′ if (s, t, s′) ∈ ∆

⊤ else

Figure 4.5: The constraint ϕdeadlock-free ensures the restricted system to be
deadlock-free.

Theorem 4.4.1 states that Algorithm 4 is sound. This follows from Theorem
3.4.1 and by bounding the number of removed transitions of the generated candi-
date repairs. Further, from Theorem 3.4.2 it follows that Algorithm 4 is complete
which is stated by Theorem 4.4.2.

Theorem 4.4.1. [36](Soundness). For every repair δ′ returned by Algorithm 4:

• δ′ is a minimal repair for A,B and φ, and

• the transition relation of Restrict(A,B, δ′) is total.

Theorem 4.4.2. [36](Completeness). If Algorithm 4 returns Unrealizable, then
the paramaterized system has no repair.

4.5 Deadlock Detection

In this section, a SAT-based approach is presented to generate repairs that are
deadlock-free. By extending the constraint system in Algorithm 4 with the fol-
lowing constraints, only candidate repairs that do not introduce global deadlocks,
are constructed.

Assume that Algorithm 4 wants to repair the disjunctive system based on pro-
cess templates A = (QA, initA, δA) and B = (QB, initB, δB) for the parameterized
specification φ. For any disjunctive system there exists a cutoff c ∈ N such that
if A||Bc is globally deadlock-free then ∀n ≥ c : A||Bn is globally deadlock-free.
For example, a cutoff c′ for global deadlock detection in disjunctive systems is

53

CHAPTER 4. REFINEMENT-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS FOR LIVENESS PROPERTIES

c′ = 2|QB| − 1 [6]. By defining constraints over transitions of the cutoff-sized
system A||Bc, the SAT-solver guarantees to generate deadlock-free candidate re-
pairs.

Figure 4.5 shows the constraint system ϕdeadlock-free used to generate deadlock-
free repairs for a given system A||Bc = (S, initS,∆). Intuitively, the constraints
perform a reachability analysis over the global states of the cutoff-sized system.
The restricted system is deadlocked if there exists a reachable state where no
successor state is reachable. Thus, if a global state of the restricted system is
reachable, then at least one of its successor states has to be reachable. For each
global state s ∈ S, the variable reachs indicates if s is reachable in the repaired
system. The constraint requires reachinitS to hold, i.e., the initial state has to
be reachable. The constraint system checks for every global state s that if s
is reachable, then there has to exist a reachable successor. This bookkeeping
is done with the constraints ExistsSuccs,t and Succs,t,s′ . ExistsSuccs,t checks if
the candidate repairs contains an enabled transition that leads to a successor
of s. The constraint Succs,t,s′ updates the reachable successor states, i.e., if a
transition t is enabled and leads to the successor s′ for s, then reachs′ has to hold.
By building these constraints for all global states, any candidate repair that is
constructed is guaranteed to be global deadlock-free.

4.6 Extensions and Limitations

In the following, we discuss how the presented repair algorithm can be modified
to minimally repair system classes that go beyond disjunctive systems. Further-
more, the limitations of the repair approach are shown.

Algorithm 4 can be used to repair systems for any property that can be
expressed as an LTL\X-formula. These properties include safety and liveness
properties. Further, the algorithm can be extended to other system classes where
there exists a cutoff for model checking, including conjunctive systems by inter-
preting the guards conjunctively [35]. The algorithm can also be modified for
pairwise-rendezvous system if there exists a cutoff for a given system and spec-
ification. However, this is not necessarily the case as shown by Aminof et al.
[2]. If there exists a cutoff, for synchronous transitions the initial constraint has
to be modified to ensure that the repair is total, as described in Section 3.5.2.
Furthermore, the procedure BuildConstraints has to be modified to avoid
found error sequences. The modified procedures for conjunctive and pairwise-
rendezvous systems are presented by Jacobs and Sakr [36]. However, the repair
algorithm cannot be extended to repair broadcast systems for liveness properties
since the parameterized model checking problem is undecidable for broadcast
systems and liveness properties [13]. The deadlock detection approach, intro-
duced in Section 4.5, works for all system classes where there exists a cutoff for

54

CHAPTER 4. REFINEMENT-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS FOR LIVENESS PROPERTIES

global deadlock detection. For synchronous transitions the constraints have to
be modified in a similar way as for the procedure BuildConstraints. This
also holds for the cost constraints ϕcost to construct minimal candidate repairs
for synchronous transitions.

As described in Section 3.5.3, if a given system cannot be repaired for a given
specification, the designer can add transitions for more communication between
the processes, and run the algorithm again. If the designer is interested in a repair
that removes as many of these added transitions as possible, the constraint system
could be extended with a cost constraint ϕcost′ . This constraint works similar to
the constraint for minimal repairs, but checks for repairs that delete as many
transitions as possible, for the added transitions. A repair approach that can
automatically add transitions for more communication, is shown in Chapter 5.

55

Chapter 5

Operation-Based Parameterized
Repair of Guarded Protocols

In this chapter, we introduce a paramaterized repair approach that applies a set
of operations to repair guarded protocols. This operation-based parameterized
repair approach is inspired by the explainable reactive synthesis approach intro-
duced by Baumeister et al. [10]. We present a paramaterized minimal repair
algorithm where correctness of the repaired system is witnessed by an annota-
tion function. Furthermore, we discuss possible extensions and limitations of this
approach. We start by giving a motivating example.

5.1 Motivating Example

Consider the parameterized system for one writer and an arbitrary number of
reader processes, depicted in Figure 5.1. Possible system executions include runs
where the writer does not move and stays in the initial state forever or eventu-
ally remains in the writing state. Thus, the parameterized system violates the
specification φlive = nw ∧ w that requires the writer to change its state
infinitely often. However, the presented repair approach in Chapter 4 is unable
to repair the system since by only removing transitions, the writer is unable to
access the initial state once it starts writing. Furthermore, the guard for the
transition of the reader process from r to nr needs to be changed to avoid runs
where the writer stays in the initial state forever. This is also not possible for the
refinement-based repair approach. Instead, the designer has to change the system
by adding transitions for more communication between the processes, and run the
repair algorithm again. For concurrent systems, when allowing for more commu-
nication, the designer needs to be very careful to not introduce system executions
that violate the designer’s intent. Since this may be a non-trivial task, there is
a need for a parameterized minimal repair approach that can automatically add
transitions for more communication if needed. The following approach shows how

57

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

nw w

(a) Writer

nr r

{nw}

{nw}

(b) Reader

Figure 5.1: A parameterized system violating φlive

to repair systems by applying a set of operations, including transition redirects
and changing transition guards. The system in Figure 5.1 can be repaired for
φlive by redirecting the transition loop in the writing state to the initial state.
Furthermore, by changing the transition guard for the reader process from r to
nr, the system in Figure 4.1 is obtained which has been shown to satisfy φlive.

5.2 Problem Statement

In this section, we lay the foundation of the operation-based minimal repair
approach. We start by defining the possible operations and consistent transfor-
mations that include a set of operations. After formulating the minimal repair
problem, we show a high-level parameterized repair algorithm that applies the
presented operations.

5.2.1 Operations

In the following, we specify systems with parameterized specifications. The given
process templates A and B are interpreted disjunctively and we use the explicit
representation of parameterized systems from Section 2.1. Furthermore, we do
not assume that every transition guard is a singleton. However, we assume that
every process template P ∈ {A,B} is complete, i.e., there exists a transition
from every state s ∈ QP to each state s′ ∈ QP , and that P is deterministic,
i.e., there exists no qP , qP1 , qP2 ∈ QP and g1, g2 ∈ P(A ∪̇B) where qP1 ̸= qP2 ,
(qP , g1, qP1) ∈ δP , (qP , g2, qP2) ∈ δP and g1 ∩ g2 ̸= ∅. Note that this is not a
restriction since every state qP where q′P is not an immediate successor can be
represented by the transition (qP , ∅, q′P). In the following, we define two possible
operations that change a transition guard or redirect a transition.

For the process templates A = (QA, initA, δA) and B = (QB, initB, δB), an
operation o is either a changed transition guard or a redirection of a transition
of P ∈ {A,B}. The process templates A′ and B′ that result from applying an
operation o to A,B, is denoted by (A′, B′) = apply((A,B), o).

A changed transition guard for P ∈ {A,B} is denoted by the tuple oguard =
(qP , q

′
P , g), where qP , q

′
P ∈ QP and g ∈ P(A ∪̇B). A changed transition guard

58

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

operation changes the guard of the transition from qP to q′P to guard g. For
a changed transition guard oguard = (qP , q

′
P , g), the resulting process templates

(A′, B′) = apply((A,B), oguard) are defined as:

• If P = A, then B′ = B and A′ = (QA, initA, δ
′
A), where (qP , g

′, q′P) ∈ δ′A. For
all qA, q

′
A ∈ QA, g

′ ∈ P(A ∪̇B) with qA ̸= qP or q′A ̸= q′P : (qA, g
′, q′A) ∈ δ′A

iff q′A ̸= q′P : (qA, g
′, q′A) ∈ δA.

• If P = B, then A′ = A and B′ = (QB, initB, δ
′
B), where δ′B is defined

analogously.

Note that changed transition guard operations are sufficient to repair any sys-
tem as shown in Lemma 5.2.1. However, in practice, it is often efficient to repair
systems by redirecting a transition instead. Furthermore, transition redirections
are necessary to repair labeled process templates as discussed in Section 5.5.

A transition redirection for P ∈ {A,B} is denoted by the tuple otransition =
(qP , q

′
P , g), where qP , q

′
P ∈ QP , g ∈ P(A ∪̇B) and ∀q ∈ g : ∃q′′P ∈ QP , g

′ ∈
P(A ∪̇B) with (qP , g

′, q′′P) ∈ δP and q ∈ g′. For a transition redirection otransition =
(qP , q

′
P , g), the resulting process templates (A′, B′) = apply((A,B), otransition) are

defined as:

• If P = A, then B′ = B and A′ = (QA, initA, δ
′
A). For all g′ ∈ P(A ∪̇B),

(qP , g
′ ∪ g, q′P) ∈ δ′A iff (qP , g

′, q′P) ∈ δA. For all qA ∈ QA with qA ̸= q′P and
for all g′ ∈ P(A ∪̇B) it holds that (qP , g

′\g, qA) ∈ δ′A iff (qP , g
′, qA) ∈ δA.

Furthermore, for all qA, q
′
A ∈ QA where qA ̸= qP and for all g′ ∈ P(A ∪̇B)

it holds that (qA, g
′, q′A) ∈ δ′A iff (qA, g

′, q′A) ∈ δA.

• If P = B, then A′ = A and B′ = (QB, initB, δ
′
B), where δ′B is defined

analogously.

Intuitively, a transition redirection otransition = (qP , q
′
P , g) redirects all tran-

sitions from qP to q′P for guard g. Thus, when applying otransition, the guard g
needs to be added for the transition from qP to q′P . Furthermore, g needs to be
removed from the guard for all other transitions starting in qP .

A finite set of operations ξ is called a transformation. A transformation for
process templates A and B is called consistent if there exists no o1, o2 ∈ ξ such
that apply(apply((A,B), o1), o2) ̸= apply(apply((A,B), o2), o1), i.e., the resulting
templates do not differ depending on the order in which operations are applied.
An example for a transformation that is not consistent, is any transformation con-
taining two different changed transition guards operations for the same transition.
Then, the resulting templates differ if the changed transition guard operations
are applied in a different order. For a consistent transformation ξ for A,B, the
process templates A′, B′ that are reached when applying every transformation in
ξ, is denoted by (A′, B′) = apply∗((A,B), ξ).

59

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

Note that for any transition redirection otransition = (qP , q
′
P , g), there exists

a transformation ξ such that apply((A,B), otransition) = apply∗((A,B), ξ), where
ξ only contains changed transition guard operations. A transition redirection
otransition = (qP , q

′
P , g) redirects all transitions for g from qP to q′P for P ∈

{A,B}. Thus, for the transformation ξ = {oguard(qP , q
′′
P , g

′\g) | ∃q′′P ∈ QP , g
′ ∈

P(A ∪̇B) : q′′P ̸= q′P ∧ (qP , g
′, q′′P) ∈ δP}∪{oguard(qP , q

′
P , g∪ g′) | ∃g′ ∈ P(A ∪̇B)} :

(qP , g
′′, q′P) ∈ δP} , it holds that apply((A,B), otransition) = apply∗((A,B), ξ). In-

tuitively, the transition redirection can be represented by a set of changed guard
transitions such that each guard is removed by all transitions from qP to any state
q′′P ̸= q′P and is added to the guard for the transition from qP to q′P . However, by
including transition redirections, we obtain more efficient minimal repairs that
provide a more visual feedback for the designer.

Example 5.2.1. Consider the writer A and reader B in Figure 5.1. By applying
the consistent transformation ξ = {oguard, otransition} with oguard = (nr, r, {w}) and
otransition = (w, nw, QA∪QB), the writer A′ and reader B′ in Figure 4.1 is reached,
i.e., (A′, B′) = apply∗((A,B), ξ).

5.2.2 Minimal Repair Transformations

Based on consistent transformations, we can define minimal repair transforma-
tions.

Definition 5.2.1. (Minimal Repair Transformation)
Given the process templates A = (QA, initA, δA) and B = (QB, initB, δB), and
the parameterized specification φ defined over atomic propositions from QA and
indexed propositions from QB × {1, . . . , k}. A consistent transformation ξ is a
repair transformation for A,B and φ iff ∀n ≥ k : A′||B′n ⊨ φ and A′||B′n is
globally deadlock-free where (A′, B′) = apply∗((A,B), ξ). A repair ξ is minimal if
there exists no repair ξ′ with |ξ′| < |ξ|.

In the remainder of this chapter, we simply call a repair transformation, a
repair. We only make the distinction where necessary. For example, the trans-
formation in Example 5.2.1 is a minimal repair for φlive = nw ∧ w for
the process templates in Figure 5.1.

Lemma 5.2.1 states that for the given process templates A,B and the param-
eterized specification φ defined over states of A and k processes of B, there exists
a repair iff there exists A′, B′ with A′ = (QA, initA, δ

′
A) and B′ = (BA, initB, δ

′
B)

such that n ≥ k : A′||B′n ⊨ φ. Thus, it shows that the defined operations are
sufficient to repair any system iff φ is realizable for templates with states QA and
QB. This is important since this property does not hold for the refinement-based
approach in Chapter 4.

60

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

Lemma 5.2.1. Given process templates A = (QA, initA, δA), B = (QB, initB, δB)
and the parameterized specification φ defined over atomic propositions from QA

and indexed propositions from QB × {1, . . . , k}. There exists a repair ξ for A,B
and φ iff there exists A′ = (QA, initA, δ

′
A) and B′ = (QB, initB, δ

′
B) such that

∀n ≥ k : A′||B′n ⊨ φ.

Proof. Let A = (QA, initA, δA), B = (QB, initB, δB) and the parameterized speci-
fication φ is defined over atomic propositions from QA and indexed propositions
from QB × {1, . . . , k}. The lemma holds iff both implications hold.

Let ξ be a repair for A,B and φ. Then, for (A′, B′) = apply∗((A,B), ξ) it
follows from Definition 5.2.1 that ∀n ≥ k : A′||B′n ⊨ φ.

Let A′ = (QA, initA, δ
′
A) and B′ = (QB, initB, δ

′
B) such that ∀n ≥ k : A′||B′n ⊨

φ. By assumption δ′A and δ′B are complete. Then, ξ is a consistent transformation
defined as ξ = {oguard(qA, q

′
A, g) | (qA, g, q′A) ∈ δ′A}∪{oguard(qB, q

′
B, g) | (qB, g, q′B) ∈

δ′B}, i.e., ξ changes the guard of every transition to the guard for the transition
in δ′A and δ′B. Since (A′, B′) = apply∗((A,B), ξ), ξ is a repair for A,B and φ.

While a minimal repair ensures that only operations are applied that min-
imally remove incorrect system executions, Lemma 5.2.2 states that minimal
repairs are not unique. Note that the proof of Lemma 5.2.2 works analogously
to the proof of Lemma 4.2.1.

Lemma 5.2.2. There exist process templates A,B, a parameterized specification
φ and minimal repairs ξ1, ξ2 for A,B, and φ with ξ1 ̸= ξ2.

Proof. Let A = (QA, nw, δA) and B = (QB, nr, δB) with QA = {nw,w}, QB =
{nr, r}, δA = {(nw, {nr},w), (nw, {r},w), (w, {nr}, nw), (w, {r}, nw)} and δB =
{(nr, {nw}, r), (nr, {w}, r), (r, {w}, r), (r, {nw}, nr)}. Figure 4.2 illustrates the pro-
cess templates where A is the writer and B the reader. For φ = w, ∀n ≥
1 : A||Bn ⊭ φ since there exists a run where only process B1 moves by tak-
ing the transitions (nr, {nw}, r) and (r, {nw}, nr). Thus, w never holds. ξ1 =
{oguard(nr, r, {w})} and ξ2 = {oguard(r, nr, ∅)} are minimal repairs for A,B and φ
since for both restrictions a B-process eventuall can only move when A is in w.
Since ξ1 ̸= ξ2, minimal repairs are not necessarily unique.

Since the following parameterized repair algorithm generates a transformation
for a cutoff-sized system, the following observation should be noted. Let c be
a cutoff for process templates A = (QA, initA, δA), B = (QB, initB, δB) and the
paramaterized specification φ. Then, by Definitions 5.2.1 and 4.3.1 it follows
that if ξ is a minimal repair for process templates A,B and φ, then there exists
no n ≥ c and ξ′ with |ξ′| < |ξ| such that for (A′, B′) = apply∗((A,B), ξ′) it holds
A′||B′n ⊨ φ. Intuitively, this states that if ξ is a minimal repair for the cutoff-
sized system A||Bc then ξ is a minimal repair for all systems A||Bn with n ≥ c
and vice versa. Note that this does not hold for systems A||Bm with m ≤ c since
for a small m, it may be sufficient to apply fewer operations.

61

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

Build Constraints
——————————
• initial constraint
• correctness constraints
• deadlock constraints
• cost constraint

cutoff cA,Bφ

k := 1

SAT-SolverUnrealizable minimal repair ξ

cost k

unsatisfiable:

k = max

satisfiable

unsatisfiable:
k < max:
k = k + 1

Figure 5.2: Parameterized minimal repair based on consistent transformations

5.2.3 Parameterized Minimal Repair Problem

Before giving an overview about the repair algorithm generating consistent trans-
formations that minimally repair disjunctive systems, we define the parameterized
minimal repair problem.

Problem 5.2.1. (Parameterized Minimal Repair Problem)
Given the process templates A = (QA, initA, δA) and B = (QB, initB, δB), and
a parameterized specification φ defined over atomic propositions from QA and
indexed propositions from QB × {1, . . . , k}. The parameterized minimal repair
problem is to decide if there exists a minimal repair ξ for A,B and φ.

Figure 5.2 shows a high-level overview of the parameterized minimal repair
algorithm that constructs consistent transformations. For a given parameter-
ized specification φ, process templates A,B and a cutoff c, the algorithm returns
a minimal repair ξ iff one exists. In contrast to the repair approach in Chap-
ter 4, the transformation generated by the SAT-solver is guaranteed to satisfy
the specification. Thus, the algorithm does not generate candidate repairs that
need to be model checked. Instead, correctness of the generated transforma-
tion is guaranteed by adding constraints defined over the resulting cutoff-sized
system as explained in the following Section 5.3. Furthermore, the constraint sys-
tem contains deadlock constraints to avoid transformation that introduce global
deadlocks, following the approach in Section 4.5. To obtain a minimal repair,
the algorithm bounds the number of operations by encoding a cost constraints
similar to the constraints shown in Section 4.4.1. If the SAT-solver cannot gen-
erate a transformation for the maximal bound of operations, the system cannot

62

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

be repaired for the given specification.

5.3 Verification of Finite-State Systems

In this section, we show how to verify correctness of finite-state systems using
annotation functions. By encoding a valid annotation function, the parameter-
ized repair algorithm generates transformations such that the resulting system
satisfies the specification.

For a given specification φ, bounded synthesis automatically produces size-
optimal transition systems that satisfy φ [26]. Let Aφ be a universal co-Büchi
automaton Aφ with L(Aφ) = L(φ). Note that Aφ can be obtained by comple-
menting the nondeterministic Büchi automaton A¬φ for the negated formula that
is obtained by the construction in Theorem 2.3.1. A transition system T satisfies
φ iff every trace of T satisfies φ. Correctness of T can be verified by checking if
every run of T on the universal co-Büchi automaton Aφ visits a rejecting state
finitely often. This acceptance of T byAφ is witnessed by an annotation function.
The bounded synthesis approach produces systems satisfying φ by solving a con-
straint system that asserts the existence of a valid annotation function. Hence,
by extending the constraint system of the parameterized repair approach with
these constraints, it constructs transformations such that the resulting system
satisfies φ. The following definitions are taken from Faymonville et al. [26]. Note
that the definitions are adjusted to the setting of guarded protocols.

Definition 5.3.1. (Annotation Function)
Given the system A||Bn = (S, initS,∆) for process templates A,B, and a universal
co-Büchi automaton A = (Q, q0, δ, F). The annotation function λ : S × Q →
{⊥}∪N is a function that maps each state s ∈ S ×Q to ⊥ or a natural number.

Using an annotation function λ, it can be checked if the rejecting states are
visited only finitely often by simulating the product of the system and the uni-
versal co-Büchi automaton. If this holds for λ, we call λ valid.

Definition 5.3.2. (Valid Annotation Function)
Given the system A||Bn = (S, initS,∆) for process templates A,B, and a universal
co-Büchi automaton A = (Q, q0, δ, F). The annotation function λ : S × Q →
{⊥} ∪ N is valid if it satisfies the following conditions:

• λ(initS, q0) ̸= ⊥

• ∀s ∈ S, q ∈ Q : λ(s, q) = k ̸= ⊥ → ∀s′ ∈ S, q′ ∈ Q : (s, s′) ∈ ∆ ∧ (q, s, q′) ∈
δ → λ(s′, q′) ▷q′ k, where ▷q′ := > if q′ ∈ F and ≥ otherwise

Thus, a valid annotation function requires the initial state of the product
not to be mapped to ⊥ to indicate that this state is reachable. Furthermore,

63

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

q0

q1 q2

∗

¬nw ¬w

¬nw ¬w

(a) A universal co-Büchi automaton A for φlive

(nw,nr),q0

0

(w,nr),q2

1

(nw,r),q0

0

(w,nr),q0

0

(nw,r),q2

1

(nw,nr),q1

2

(w,r),q0

0

(w,r),q2

2

(nw,r),q1

1

(w,nr),q1

1

(nw,nr),q2

⊥

(w,r),q1

⊥

(b) A valid annotation function for A and A||B1

Figure 5.3: Verification of A||B1 for φlive , where A is the writer and B the reader
process from Figure 4.1

a reachable state in the product is labeled with a greater number than all of
its predecessors when reaching a rejecting state. Otherwise, it is labeled with
a number greater or equal. This guarantees that if a valid annotation function
exists, then no run of the system visits a rejecting state infinitely only, as shown
in Theorem 5.3.1.

Theorem 5.3.1. [26] Given a system A||Bn = (S, initS,∆) for process templates
A,B, and a universal co-Büchi automaton A = (Q, q0, δ, F). A||Bn holds on A
iff a valid (|S| · |A|)-bounded annotation function exists.

Example 5.3.1. Consider the system A||B1 for the writer process A and one
reader process B from Figure 4.1, and the specification φlive = nw ∧ w.
Figure 5.3a shows a universal co-Büchi automaton A for φlive. By Theorem
5.3.1, A||B1 satisfies φlive if there exists a valid annotation function for A||B1

and A. Figure 5.3b illustrates the product of A||B1 and A where the acceptance
is witnessed by a valid annotation function that is represented by the orange labels.
Since the states ((nw,nr),q2) and ((w,r),q1) are unreachable, they are labeled with

64

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

⊥. The states ((nw,nr),q0),((w,nr),q0), ((nw,r),q0) and ((w,r),q0) are labeled with
0 because all of their respective predecessors contain no rejecting states and have
visited no rejecting state, yet. The states ((w,nr),q2), ((nw,r),q2), ((nw,r),q1) and
((w,nr),q1) are labeled with 1 since they visit a rejecting state and have to be labeled
strictly greater than all of their respective predecessors which are labeled with 0.
Furthermore, the annotation function labels the states ((nw,nr),q1) and ((w,r),q2)
with 2 such that they are labeled strictly greater than all of their predecessors.
Thus, the annotation function is valid and A||B1 holds on A.

5.4 Parameterized Minimal Repair

In this section, the constraints for generating consistent transformations are pre-
sented. Furthermore, a parameterized minimal repair algorithm is shown that
applies a minimal number of operations.

Given a parameterized specification φ, process templates A = (QA, initA, δA)
and B = (QB, initB, δB), and a cutoff c for φ, A and B. By Lemma 5.2.1, there ex-
ists a repair ξ for φ and A||Bc iff there exist process templates A′ = (QA, initA, δ

′
A)

and B′ = (QB, initB, δ
′
B) with A′||B′c ⊨ φ. Thus, the SAT-solver needs to find

δ′A and δ′B such that the resulting system satisfies φ, is globally deadlock-free
and can be obtained from A,B with a minimal consistent transformation. In the
following, we present the corresponding constraints.

5.4.1 Constraint Solving for Valid Annotation Functions

Verifying if the generated system satisfies φ, can be done by checking the exis-
tence of a valid annotation function, as described in Section 5.3. Figure 5.4 shows
the modified basic encoding from bounded synthesis to encode a valid annota-
tion function for a system A′||B′c and the universal co-Büchi automaton A =
(QA, qA,0, δA, F) for φ [26]. The generated process templates A′ = (QA, initA, δ

′
A)

and B′ = (QB, initB, δ
′
B) are represented by the variables δ′Aq,g,q′

and δ′Bq,g,q′
. As-

sume for better readability that all transition guards only contain one state, in
contrast to the assumption in Section 5.2. This is not a contradiction or re-
striction since both system classes are equally expressive and can be transformed
into each other. The annotation function is represented by the variables λB

s,qA
and λ#

s,qA
, where λB

s,qA
denotes if the state (s, qA) of the product is reachable

and λ#
s,qA

denotes the annotated number. Note that the annotation function is
defined over states of the automaton and global states s ∈ S of the cutoff-sized
system, i.e., S = QA× (QB)c. The constraint ϕcorrect ensures that the annotation
function is valid. Thus, the initial state of the product has to be reachable, i.e.,
λB
initS ,qA,0

= ⊤. Furthermore, ϕcorrect includes the constraint totality to ensure
that both resulting process templates are total. The constraints lambdaAs,qA and

65

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

∃{δ′Aq,g,q′
|q, q′ ∈ QA, g ∈ QB}

∃{δ′Bq,g,q′
|q, q′ ∈ QB, g ∈ QA∪̇QB}

∃{λB
s,qA

, λ#
s,qA
|s ∈ S, qA ∈ QA} : ϕcorrect

ϕcorrect = λB
initS ,qA,0

∧ totality ∧
∧
s∈S

∧
qA∈QA

lambdaAs,qA ∧ lambdaBs,qA

totality =
∧

q∈QA

∨
g∈QB

∨
q′∈QA

δ′Aq,g,q′
∧

∧
q∈QB

∨
g∈QA∪̇QB

∨
q′∈QB

δ′Bq,g,q′

lambdaAs,qA = λB
s,qA
→

∧
q′A∈QA

∧
q∈QA

∧
g∈QB

∧
q′∈QA

∧
s′∈S

(δ′Aq,g,q′
→

(λB

s′,q′A
∧ λ#

s′,q′A
≥ λ#

s,qA
)) if (qA, s, q

′
A) ∈ δA ∧ s

(q,g,q′)→ s′ ∧ q′A /∈ F

(λB
s′,q′A
∧ λ#

s′,q′A
> λ#

s,qA
)) if (qA, s, q

′
A) ∈ δA ∧ s

(q,g,q′)→ s′ ∧ q′A ∈ F

⊤) else

lambdaBs,qA = λB
s,qA
→

∧
q′A∈QB

∧
q∈QB

∧
g∈QA∪̇QB

∧
q′∈QB

∧
s′∈S

(δ′Bq,g,q′
→

(λB

s′,q′A
∧ λ#

s′,q′A
≥ λ#

s,qA
)) if (qA, s, q

′
A) ∈ δA ∧ s

(q,g,q′)→ s′ ∧ q′A /∈ F

(λB
s′,q′A
∧ λ#

s′,q′A
> λ#

s,qA
)) if (qA, s, q

′
A) ∈ δA ∧ s

(q,g,q′)→ s′ ∧ q′A ∈ F

⊤) else

Figure 5.4: The constraint ϕcorrect ensures that the generated system satisfies φ.

lambdaBs,qA check if the annotation function is valid for the reachable states of
the product following the conditions from Definition 5.3.2. For these constraints,

s
(q,g,q′)→ s′ denotes that the global state s reaches s′ by taking the local transition

(q, g, q′). If a SAT-solver finds δ′A and δ′B such that there exists valid annotation
function, then the generated system satisfies φ.

66

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

∃{costTrAq,q′,c|c ∈ {0, . . . , k + 1}, q, q′ ∈ QA}
∃{costTrBq,q′,c|c ∈ {0, . . . , k + 1}, q, q′ ∈ QB}
∃{costGuardAq,g,c|c ∈ {0, . . . , k + 1}, q ∈ QA, g ∈ QB}
∃{costGuardBq,g,c|c ∈ {0, . . . , k + 1}, q ∈ QB, g ∈ QA∪̇QB} : ϕcost

ϕcost =
∧

q,q′∈QA,c≤k

rdTransAq,q′,c ∧ notRdTransAq,q′,c ∧ ¬costTrAq,q′,k+1∧
q,q′∈QB ,c≤k

rdTransBq,q′,c ∧ notRdTransBq,q′,c ∧ ¬costTrBq,q′,k+1∧
q∈QA,g∈QB ,c≤k

chGuardAq,g,c ∧ notChGuardAq,g,c ∧ ¬costGuardAq,g,k+1∧
q∈QB ,g∈QA∪̇QB ,c≤k

chGuardBq,g,c ∧ notChGuardBq,g,c ∧ ¬costGuardBq,g,k+1

Figure 5.5: The constraint ϕcost ensures that at most k-many operations are
applied.

5.4.2 Constraint Solving for Minimal Repairs

A minimal repair for a system A||Bn and φ, is a repair ξ such that there is no re-
pair ξ′ with |ξ′| < |ξ|. While ϕcorrect guarantees that the generated system A′||B′n

satisfies φ, the constraint ϕcost in Figure 5.5 checks if for a given bound k, there is
a consistent transformation ξ with (A′, B′) = apply∗((A,B), ξ) and |ξ| = k. For
better readability, assume wlog. that QA = {0, . . . , i} and QB = {i+1, . . . , j} for
some i, j ∈ N with i < j. By using an implicit ordering over the possible oper-
ations, the constraints count the number of applied operations. The constraints
start by counting the number of transition redirections of A, followed by the ones
for B. Then, it counts the number of changed transition guards for A, followed
by the ones for B. The variables costTrAq,q′,c, costTrBq,q′,c, costGuardAq,g,c and
costGuardBq,g,c are true if the number of applied operations so far equals c. For
costTrAq,q′,c and costTrBq,q′,c, the current operation is a transition redirection for
A or B from q to q′. Further, for costGuardAq,g,c and costGuardBq,g,c, the current
operation is a changed transition guard of A or B starting from q for g. The
concrete operations and transformation can be extracted by comparing the given
process templates A and B with the process templates returned by the SAT-
solver. The bookkeeping to update the current cost is done by the constraints
shown in Figure 5.6.

The constraints in Figure 5.7 check which operations are applied. The gen-
erated templates A′, B′ can be minimally obtained from A,B with the following
consistent transformation. The constraints transAq,q′ and transBq,q′ represent a
transition redirection from q to q′ for all transitions (q, g, q′) ∈ δ′A that have been
enabled for A or B in q but have reached a successor state different from q′.

67

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

rdTransAq,q′,c =

transAq,q′ → costTrAq,q′,1 if q = q′ = initA

transAq,q′ ∧ costTrAq−1,|QA|−1,c → costTrAq,q′,c+1 if q ̸= initA, q
′ = initA

transAq,q′ ∧ costTrAq,q′−1,c → costTrAq,q′,c+1 else

notRdTransAq,q′,c =

¬transAq,q′ → costTrAq,q′,0 if q = q′ = initA

¬transAq,q′ ∧ costTrAq−1,|QA|−1,c → costTrAq,q′,c if q ̸= initA, q
′ = initA

¬transAq,q′ ∧ costTrAq,q′−1,c → costTrAq,q′,c else

rdTransBq,q′,c =

transBq,q′ ∧ costTrA|QA|−1,|QA|−1,c → costTrBq,q′,c+1 if q = q′ = initB

transBq,q′ ∧ costTrBq−1,|QB |−1,c → costTrBq,q′,c+1 if q ̸= initB, q
′ = initB

transBq,q′ ∧ costTrBq,q′−1,c → costTrBq,q′,c+1 else

notRdTransBq,q′,c =

¬transBq,q′ ∧ costTrA|QA|−1,|QA|−1,c → costTrBq,q′,c if q = q′ = initB

¬transBq,q′ ∧ costTrBq−1,|QB |−1,c → costTrBq,q′,c if q ̸= initB, q
′ = initB

¬transBq,q′ ∧ costTrBq,q′−1,c → costTrBq,q′,c else

chGuardAq,g,c =

guardAq,g ∧ costTrB|QB |−1,|QB |−1,c → costGuardAq,g,c+1 if q = initA ∧ g = initB

guardAq,g ∧ costGuardAq−1,|QB |−1,c → costGuardAq,g,c+1 if q ̸= initA ∧ g = initB

guardAq,g ∧ costGuardAq,g−1,c → costGuardAq,g,c+1 else

notChGuardAq,g,c =

¬guardAq,g ∧ costTrB|QB |−1,|QB |−1,c → costGuardAq,g,c if q = initA ∧ g = initB

¬guardAq,g ∧ costGuardAq−1,|QB |−1,c → costGuardAq,g,c if q ̸= initA ∧ g = initB

¬guardAq,g ∧ costGuardAq,g−1,c → costGuardAq,g,c else

chGuardBq,g,c =

guardBq,g ∧ costGuardA|QA|−1,|QB |−1,c → costGuardBq,g,c+1 if q = initB ∧ g = initA

guardBq,g ∧ costGuardBq−1,|QB |−1,c → costGuardAq,g,c+1 if q ̸= initB ∧ g = initA

guardBq,g ∧ costGuardBq,g−1,c → costGuardAq,g,c+1 if q ̸= initB ∧ g ̸= initA ∧ g ∈ QA

guardBq,g ∧ costGuardBq,|QA|−1,c → costGuardBq,g,c+1 if g = initB

guardBq,g ∧ costGuardBq,g−1,c → costGuardBq,g,c+1 else

notChGuardBq,g,c =

¬guardBq,g ∧ costGuardA|QA|−1,|QB |−1,c → costGuardBq,g,c if q = initB ∧ g = initA

¬guardBq,g ∧ costGuardBq−1,|QB |−1,c → costGuardAq,g,c if q ̸= initB ∧ g = initA

¬guardBq,g ∧ costGuardBq,g−1,c → costGuardAq,g,c if q ̸= initB ∧ g ̸= initA ∧ g ∈ QA

¬guardBq,g ∧ costGuardBq,|QA|−1,c → costGuardBq,g,c if g = initB

¬guardBq,g ∧ costGuardBq,g−1,c → costGuardBq,g,c else

Figure 5.6: Constraints for updating the cost of applied operations used for ϕcost

Further, the constraints guardAq,g and guardBq,g represent a changed transition
guard operation of A or B in q for guard g where either g is disabled in A′ or B′

for all transitions in q, and g is enabled for some transition of A or B in q, or g is
enabled in A′, B′ for some transition starting in q, and g is disabled in A,B for all
transitions starting in q. If a SAT-solver can find a transformation ξ with ξ = k
that satisfies ϕcost, then (A′, B′) = apply∗((A,B), ξ). By increasing the bound k
of allowed operations, the repair algorithm constructs minimal repairs.

5.4.3 Deadlock Detection

To generate minimal repairs that are globally deadlock-free, the constraint system
can be extended with a constraint ϕdeadlock-free. The constraint works analogously
to the one in Figure 4.5. It encodes a reachability analysis of the global state
space of A′||B′c. For every global state s ∈ QA × (QB)c that is reachable, there

68

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

transAq,q′ =
∨

g∈QB

{
δ′Aq,g,q′

if (q, g, q′) /∈ δA ∧ ∃q′′ ∈ QA : (q, g, q′′) ∈ δA

⊥ else

transBq,q′ =
∨

g∈QA∪̇QB

{
δ′Bq,g,q′

if (q, g, q′) /∈ δB ∧ ∃q′′ ∈ QB : (q, g, q′′) ∈ δB

⊥ else

guardAq,g =

{∧
q′∈QA

¬δ′Aq,g,q′
if ∃q′′ ∈ QA : (q, g, q′′) ∈ δA∨

q′∈QA
δ′Aq,g,q′

else

guardBq,g =

{∧
q′∈QB

¬δ′Bq,g,q′
if ∃q′′ ∈ QB : (q, g, q′′) ∈ δB∨

q′∈QB
δ′Bq,g,q′

else

Figure 5.7: Constraints for checking which operations are applied

has to be a local transition of A′ or B′ that is enabled in s. Otherwise, s is
globally deadlocked.

5.4.4 Parameterized Minimal Repair Algorithm

Given process templates A,B, a parameterized specification and initial con-
straints initConstraint, Algorithm 5 shows how to construct a consistent transfor-
mation that minimally repairs A,B for φ. The initial constraint is a user-designed
constraint to specify the resulting system, e.g., to preserve certain transitions.
The algorithm starts by computing a cutoff c for A,B and φ, and by building a
universal co-Büchi automaton A for φ. Then, the constraint system is extended
with the constraint ϕcorrect and the modified constraint ϕdeadlock-free from Figures
5.4 and 4.5 to verify correctness of the generated system A′||B′c and to guarantee
the absence of global deadlocks (Lines 8-11). To obtain a minimal repair, the
algorithm checks for a consistent transformation that applies a bounded num-
ber of operations currentCost. For each bound, ϕcost from Figures 5.5, 5.6 and
5.7 is built in Line 14. If the SAT-solver finds a transformation ξ satisfying the
constraints, then ξ is a minimal repair for A,B and φ. Otherwise, the algorithm
checks for a transformation for the increased bound. If the SAT-solver cannot find
a repair for the maximal bound of operations, the algorithm return Unrealizable
to signal that there exists no repair for A,B and φ. By Lemma 5.2.1, a maximal
bound is (|QA| · |QA|) · (|QB| · |QB|) when changing the guard for every transition.
By introducing the maximal bound of applied operations, the algorithm always
terminates.

Theorem 5.4.1 states that Algorithm 5 is sound. This follows from Theorem
5.3.1 and by bounding the number of operations of the generated transformation.
Furthermore, from Lemma 5.2.1 it follows that Algorithm 5 is completed which
is stated by Theorem 5.4.2.

Theorem 5.4.1. [26](Soundness). For every repair ξ returned by Algorithm 5:

69

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

Algorithm 5 Parameterized Minimal Repair

1: procedure ParameterizedMinimalRepair(A,B, φ,initConstraint)
2: A′ ← A, B′ ← B, accumConstraint ← initConstraint, currentCost ← 1
3: // compute the cutoff
4: cutoff ← ComputeCutoff(A,B, φ)
5: //build the universal co-Büchi automaton A for φ
6: A ← BuildAutomaton(φ)
7: //build ϕcorrect and ϕdeadlock-free

8: correctConstraint ← BuildCorrectnessConstraint(A,B,cutoff ,A)
9: accumConstraint ← accumConstraint ∧ correctConstraint
10: deadlockConstraint ← BuildDeadlockConstraint(A,B,cutoff)
11: accumConstraint ← accumConstraint ∧ deadlockConstraint
12: //check for transformations that apply currentCost-many operations
13: while currentCost ≤ maxCostBound(A,B) do
14: costConstraint ← BuildCostConstr(A,B, currentCost)
15: (ξ,isSat) ← SAT(accumConstraint ∧ costConstraint)
16: if !isSat then
17: currentCost ← currentCost+1
18: else
19: return ξ

20: return Unrealizable

• ξ is a minimal repair for A,B and φ, and

• the transition relation of apply∗((A,B), ξ) is total.

Theorem 5.4.2. (Completeness). If Algorithm 5 returns Unrealizable, then the
paramaterized system has no repair.

5.5 Extensions and Limitations

In the following, we discuss how the presented operation-based repair algorithm
can be modified to minimally repair system classes that go beyond disjunctive
systems. Furthermore, the limitations of the repair approach are shown.

Algorithm 5 can be used to repair systems for any property that can be ex-
pressed as an LTL\X-formula. These properties include safety and liveness prop-
erties. In contrast to the refinement-based repair algorithms, i.e., Algorithms 3
and 4, Algorithm 5 generates a repair transformation if and only if there exist
process templates preserving the given structure such that the resulting parama-
terized system satisfies the given specification. This is shown by Theorems 5.4.1

70

CHAPTER 5. OPERATION-BASED PARAMETERIZED REPAIR OF
GUARDED PROTOCOLS

and 5.4.2, and Lemma 5.2.1. Further, the algorithm can be extended to other sys-
tem classes where there exists a cutoff for model checking, including conjunctive
systems by interpreting the guards conjunctively [35]. The algorithm can also be
modified for pairwise-rendezvous system if there exists a cutoff for a given system
and specification. However, as mentioned in Section 4.6, this is not necessarily
the case as shown by Aminof et al. [2]. If there exists a cutoff, for synchronous
transitions, the totality constraint of ϕcorrect has to be modified to ensure that the
repair is total, as described in Section 3.5.2. Furthermore, similar operations and
constraints have to be defined for synchronous transitions. However, Algorithm 5
cannot be extended to repair broadcast systems for liveness properties since the
parameterized model checking problem is undecidable for broadcast systems and
liveness properties [13]. Furthermore, there exist cutoffs for disjunctive and con-
junctive systems for labeled process templates, i.e., for labeled process templates,
a transition reacts to a corresponding input from the environment [6]. While it is
possible to convert labeled process templates to process templates for Definition
2.1.1 that are equivalent under LTL-properties, this comes at the cost of a blow-
up. Thus, it is more efficient to find a repair transformation for labeled process
templates instead. In contrast to repairing the presented systems, to repair sys-
tems for labeled process templates, transition redirections are essential. When
modifying the operations to include inputs for transitions, Algorithm 5 can min-
imally repair disjunctive and conjunctive systems for labeled process templates.
For process templates labeling states, the operation-based repair approach needs
to introduce a state labeling change operation to repair any system. Intuitively,
this operation changes the label of a local state and can be defined analogously
to the state labeling change operation introduced by Baumeister et al. [10].

71

Chapter 6

Implementation and Evaluation

In this chapter, we present our prototype implementation of Algorithms 4 and 5
to repair disjunctive systems. Furthermore, we evaluate both repair algorithms
on a range of benchmarks and discuss the observable results.

6.1 Prototype Implementation

We implemented the refinement-based and operation-based parameterized repair
approach, i.e., Algorithms 4 and 5, into the bounded synthesis tool BoSy [27]
implemented in the programming language Swift [32]. Thereby, we can use the
existing structures to generate constraint systems. Furthermore, we can make
use of the algorithms for automata construction and SAT-based constraint solv-
ing that are provided by BoSy. To repair disjunctive systems, we modified the
program input to include a specification φ and two process templates A and
B. Since both algorithms verify correctness for the cutoff-sized system A||Bc,
we implemented a procedure that computes the global state space of A||Bc. To
significantly reduce the number of global states, we represent global states by
configurations. In contrast to the configurations in Definition 3.2.1, we explicitly
store the local state for each B-process that is specified by φ. This representation
is also used in Example 3.5.1. Note that while for the model checking algorithm
in Algorithm 4 only the reachable global state space is computed, the prototype
implementation computes the entire global state space for encoding a valid an-
notation function used in Algorithm 5. Since Algorithm 4 contains no deadlock
detection, the constraint ϕdeadlock-free from Figure 4.5 is added to the constraint
system to generate deadlock-free repairs.

6.2 Experimental Results

In this section, we present the benchmarks used to evaluate our prototype im-
plementation for the refinement-based and operation-based parameterized repair

73

CHAPTER 6. IMPLEMENTATION AND EVALUATION

approach. After giving the technical details, we discuss the observations of the
experimental results.

6.2.1 Benchmarks

The experimental results presented in Table 6.1, correspond to the following
benchmarks:

• ReaderWriter : This disjunctive system is our running example with speci-
fications used throughout this thesis. The systems for the benchmarks de-
noted by ReaderWriter safe, are repaired for safety properties, whereas the
ones for ReaderWriter live are repaired for liveness properties. The bench-
mark is scaled by adding states dummy states for the reader process that
need to be unreachable for a minimal repair.

• SmokeDetector : This disjunctive system consists of a controller for an alarm
system and a parameterized number of smoke detectors. The systems are
repaired for a specification that requires the controller to trigger an alarm
if smoke is detected. The benchmark is scaled by adding states that detect
different types of smoke.

• Observer : This disjunctive system consists of an observer process and a pa-
rameterized number of worker processes that have to solve different global
tasks. The specification requires the observer process to signal when ev-
ery task is completed. The systems for the benchmarks denoted by Ob-
server complete, can be repaired for both repair approaches. However, for
Observer incomplete, there only exist repair transformations. The benchmark
is scaled by adding more tasks that need to be completed.

6.2.2 Technical Details

We instantiate BoSy to use ltl3ba [7] as the converter from an LTL-specification
to an automaton. As both constraint systems only contain existential quantifiers,
CryptoMiniSat [40] is used as the SAT-solver. The benchmark results were ob-
tained on a single dual-core Intel i5 processor with 3.10GHz and 16 GB RAM. A
timeout of 5 minutes is used.

6.2.3 Observations

Table 6.1 shows the experimental results for our prototype implementation. For
each benchmark, the table contains the combined number of local states and
transitions for both process templates. Furthermore, it records the number of
global states for the entire global state space of the cutoff-sized system. It also

74

CHAPTER 6. IMPLEMENTATION AND EVALUATION

Benchmark Size Refinement Operation
local tran- global states removed time time
states sitions states autom. trans. in sec. chG/rdT in sec.

ReaderWriter safe 4 13 24 4 3 1.46 1/0 1.29
ReaderWriter safe 5 20 180 4 4 2.46 1/0 5.21
ReaderWriter safe 6 27 1120 4 5 27.91 1/0 50.90
ReaderWriter live 4 13 10 3 3 1.38 1/0 1.24
ReaderWriter live 5 18 42 3 4 2.28 1/0 1.81
ReaderWriter live 6 23 168 3 5 4.12 1/0 5.89
ReaderWriter live 7 28 660 3 6 209.18 1/0 43.56
SmokeDetector 4 6 16 3 2 1.11 1/0 1.12
SmokeDetector 5 8 90 3 3 1.51 2/0 2.02
SmokeDetector 6 10 448 3 4 2.35 2/0 11.03
SmokeDetector 7 12 2100 3 5 19.46 2/0 110.75
SmokeDetector 8 14 9504 3 6 215.23 - timeout
Observer complete 6 9 63 2 2 1.26 1/0 1.51
Observer complete 8 12 336 2 3 2.12 1/0 4.48
Observer complete 10 15 1650 2 4 4.05 1/0 55.02
Observer complete 12 18 7722 2 5 13.34 - timeout
Observer incomplete 6 8 63 2 unrealizable 1/1 1.58
Observer incomplete 8 10 336 2 unrealizable 1/1 6.34
Observer incomplete 10 12 1650 2 unrealizable 1/1 84.01
Observer incomplete 12 14 7722 2 unrealizable - timeout

Table 6.1: Benchmarking results of the refinement-based and operation-based
parameterized repair approach

reports the size of the constructed automata. Note that the size of the nondeter-
ministic Büchi automaton for the negated specification ¬φ that is used for model
checking finite-state systems, equals the universal co-Büchi automaton used for
encoding an annotation function, as they are dual. For the refinement-based pa-
rameterized repair approach, Table 6.1 shows the number of transitions that is
removed by the returned minimal repair. For the operation-based parameterized
repair approach, the number of generated changed transition guard operations
and transition redirections is recorded that minimally repair the system. For
both algorithms, the runtime is reported in seconds.

The experimental results for ReaderWriter safe reveal that both approaches can
minimally repair the reader and writer process in a similar time as Algorithm 3
which generates an arbitrary repair [36]. However, for safety properties and more
complex benchmarks, we cannot compare our approaches with the prototype im-
plementation of Algorithm 3 since it was only evaluated for broadcast protocols.
The benchmark results for all benchmark families reveal that in general, the
refinement-based parameterized repair approach scales significantly better than
the operation-based one. This can be explained by the fact that the entire global
state space used to encode annotation functions is significantly bigger than the
reachable one used for model checking the cutoff-sized system. However, for
cutoff-sized systems with a small global state space, Algorithm 5 can compete

75

CHAPTER 6. IMPLEMENTATION AND EVALUATION

with Algorithm 4. Furthermore, for the benchmark family ReaderWrite live, Al-
gorithm 5 scales significantly better because for these benchmarks, the reachable
global state space is close to the entire one and multiple removed transitions can
be represented by a single changed transition guard. This observation can be seen
for all benchmarks since every minimal repair transformation applies less oper-
ations than the minimal repair generated by Algorithm 4 removes transitions.
Moreover, note that all generated repair transformations only apply changed
transition guard operations, except for the benchmark family Observer incomplete.
This is due to the fact, that all of these benchmarks contain process templates
that include all transitions needed for a refinement-based parameterized repair.
Thus, to obtain a minimal repair transformation it is most efficient to remove
transitions with changed transition guard operations. However, when the given
process templates need to add transitions for more communication, a minimal re-
pair transformation also applies transition redirections, shown by the benchmark
family Observer incomplete. For these benchmarks, Algorithm 4 cannot generate a
repair.

To summarize, Table 6.1 reveals that for disjunctive systems where the reach-
able state space is significantly smaller than the entire one, Algorithm 4 performs
significantly better than Algorithm 5. To generate minimal repair transforma-
tions for complex systems more efficiently, it may be beneficial to introduce a
parameterized repair approach that iteratively generates candidate transforma-
tions and model checks the transformed cutoff-size system, similar to Algorithm
4. Then, for verifying correctness, it is sufficient to compute the reachable global
state space of the restricted system, rather than the entire one used for encoding
a valid annotation in Algorithm 5.

76

Chapter 7

Related Work

The parameterized model checking problem is to decide if a system with a para-
metric number of processes n satisfies a specification, regardless of n. While this
problem has been shown to be undecidable even when restricting systems to uni-
form finite state processes [41], there exist several approaches deciding the prob-
lem for restricted classes of systems and properties [1, 2, 3, 15, 21, 22, 23, 25, 31]
that are collected in several surveys [13, 16, 24]. These parameterized model
checking approaches include methods that reduce the problem to finite-state
model checking for the cutoff-sized system. For these approaches, a cutoff c
is a natural number which ensures that the same correctness guarantees hold
for all systems containing at least c-many processes. Several cutoff results for
guarded protocols are shown in [2, 6, 21, 22, 34, 35].

There have been considered many automatic repair approaches where most of
them are restricted to monolithic systems [4, 14, 19, 29, 33, 37, 39], e.g., in [14],
the repair removes edges from the transition system and in [37], an expression
or a left-hand side of an assignment is assumed to be erroneous and replaced
by one that satisfies the specification. Moreover, there are multiple approaches
for repairing concurrent systems and synchronization synthesis. Some of them
are based on automata-theoretic synthesis [9, 28], whereas other approaches are
based on a counterexample-guided synthesis or repair method [11, 43]. The re-
pair approach in [30] performs verification and repair simultaneously. By using
a learning-based algorithm, for every iteration the system is changed in a way
that brings it closer to satisfying the specification. In contrast to our repair
approaches, the algorithm is not guaranteed to terminate. To the best of our
knowledge, the approaches introduced in this thesis and the approach in [36]
are the only one that provide correctness guarantees for systems with a para-
metric number of processes. Whereas the synthesis approach in [28] produces
size-optimal reactive systems that inherently satisfy a given specification, e.g., by
encoding a valid annotation function [26], the parameterized synthesis approach
investigates the synthesis problem for distributed architectures with a parametric
number of finite-state components [5, 12, 20]. While the parameterized synthesis

77

CHAPTER 7. RELATED WORK

approach generates an arbitrary system satisfying the given specification, the pa-
rameterized repair approach constructs a repaired system that is close to a given
one.

78

Chapter 8

Conclusion

In this thesis, we introduced a parameterized repair approach for properties ex-
pressed as LTL\X-formulas including safety and liveness properties. For a given
specification and incorrect parameterized system that is composed of an arbitray
number n of processes, the approach generates a repair that provides correct-
ness guarantees that hold regardless of n. These systems include systems with
disjunctive and conjunctive guards. The presented parameterized repair algo-
rithm is a modification of the repair approach for safety properties, introduced
by Jacobs et al. [36], where a repair restricts a given nondeterministic system to
eliminate faulty behavior. The modified algorithm interleaves the generation of
candidate repairs with model checking of the cutoff-sized system. By extending
the constraint system for constructing candidate repairs, repairs that introduce
deadlocks are avoided. Furthermore, the algorithm guarantees to return minimal
repairs by bounding the number of removed transitions for the candidate repair.
The modified algorithm is shown to be sound, complete and to terminate.

Moreover, to repair any faulty implementation, we introduced a paramater-
ized repair approach that can automatically add behavior including more com-
munication between processes. It has been shown that by constructing a repair
transformation that applies a set of operations for an incorrect system, any sys-
tem can be repaired if and only if there exists a system that satisfies the given
specification while preserving the given structure. We presented a parameterized
repair algorithm that generates repair transformations where correctness of the
repaired cutoff-sized system is witnessed by encoding a valid annotation function.
Furthermore, by extending the constraint system and bounding the number of
operations applied by the generated transformation, the algorithm constructs
minimal repair transformations that are deadlock-free. The algorithm is shown
to be sound, complete and to terminate.

We implemented both approaches as an extension to the synthesis tool BoSy
[27] and evaluated them on a range of benchmarks. The experimental results
revealed that repairing systems by restricting their behavior is more beneficial
than by applying a set of operations, in cases where the reachable global state

79

CHAPTER 8. CONCLUSION

space of the cutoff-sized system is significantly smaller than the entire one.
In future work, we plan to investigate the parameterized repair problem for

larger classes of systems that communicate with different synchronizations. Fur-
thermore, we would like to repair real-time systems where correctness could be
verified by timed automata. Moreover, we want to develop an explainable re-
pair approach for parameterized systems that provides rich visual feedback to
the designer, explaining the generated repair. Such an explanation could consist
of incorrect system executions that are eliminated by the repair. Further types
of explanations could include quantitive and symbolic explanations. For param-
eterized systems, we plan to develop a paramaterized synthesis approach that is
based on the techniques and methods introduced in this thesis. The parameter-
ized synthesis approach automatically constructs a system inherently satisfying
a given specification, regardless of the number of processes.

80

Bibliography

[1] Benjamin Aminof, Swen Jacobs, Ayrat Khalimov, and Sasha Rubin. Pa-
rameterized model checking of token-passing systems. In International Con-
ference on Verification, Model Checking, and Abstract Interpretation, pages
262–281. Springer, 2014.

[2] Benjamin Aminof, Tomer Kotek, Sasha Rubin, Francesco Spegni, and Hel-
mut Veith. Parameterized model checking of rendezvous systems. Distributed
Computing, 31(3):187–222, 2018.

[3] Benjamin Aminof and Sasha Rubin. Model checking parameterised multi-
token systems via the composition method. In International Joint Confer-
ence on Automated Reasoning, pages 499–515. Springer, 2016.

[4] Paul C Attie, Kinan Dak Al Bab, and Mouhammad Sakr. Model and pro-
gram repair via sat solving. ACM Transactions on Embedded Computing
Systems (TECS), 17(2):1–25, 2017.

[5] Paul C Attie and E Allen Emerson. Synthesis of concurrent systems with
many similar processes. ACM Transactions on Programming Languages and
Systems (TOPLAS), 20(1):51–115, 1998.

[6] Simon Außerlechner, Swen Jacobs, and Ayrat Khalimov. Tight cutoffs for
guarded protocols with fairness. In International Conference on Verification,
Model Checking, and Abstract Interpretation, pages 476–494. Springer, 2016.

[7] Tomáš Babiak, Mojmı́r Křet́ınskỳ, Vojtěch Řehák, and Jan Strejček. Ltl to
büchi automata translation: Fast and more deterministic. In International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 95–109. Springer, 2012.

[8] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Rep-
resentation and Mind Series). The MIT Press, 2008.

[9] Suguman Bansal, Kedar S Namjoshi, and Yaniv Sa’ar. Synthesis of coor-
dination programs from linear temporal specifications. Proceedings of the
ACM on Programming Languages, 4(POPL):1–27, 2019.

81

BIBLIOGRAPHY

[10] Tom Baumeister, Bernd Finkbeiner, and Hazem Torfah. Explainable reac-
tive synthesis. In International Symposium on Automated Technology for
Verification and Analysis, pages 413–428. Springer, 2020.

[11] Roderick Bloem, Georg Hofferek, Bettina Könighofer, Robert Könighofer,
Simon Außerlechner, and Raphael Spörk. Synthesis of synchronization using
uninterpreted functions. In 2014 Formal Methods in Computer-Aided Design
(FMCAD), pages 35–42. IEEE, 2014.

[12] Roderick Bloem and Swen Jacobs. Parameterized synthesis. Logical Methods
in Computer Science, 10, 2014.

[13] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin,
Helmut Veith, and Josef Widder. Decidability of parameterized verification.
Synthesis Lectures on Distributed Computing Theory, 6(1):1–170, 2015.

[14] Borzoo Bonakdarpour and Bernd Finkbeiner. Program repair for hyperprop-
erties. In International Symposium on Automated Technology for Verification
and Analysis, pages 423–441. Springer, 2019.

[15] Edmund Clarke, Muralidhar Talupur, Tayssir Touili, and Helmut Veith. Ver-
ification by network decomposition. In International Conference on Concur-
rency Theory, pages 276–291. Springer, 2004.

[16] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem,
et al. Handbook of model checking, volume 10. Springer, 2018.

[17] Wojciech Czerwiński, S lawomir Lasota, Ranko Lazić, JÉrôme Leroux, and
Filip Mazowiecki. The reachability problem for petri nets is not elementary.
J. ACM, 68(1), 2020.

[18] Giorgio Delzanno, Arnaud Sangnier, and Gianluigi Zavattaro. Parameterized
verification of ad hoc networks. In CONCUR. LNCS, vol. 6269, pages 313–
327. Springer, 2010.

[19] Brian Demsky and Martin Rinard. Automatic detection and repair of errors
in data structures. Acm sigplan notices, 38(11):78–95, 2003.

[20] Allen Emerson and Jai Srinivasan. A decidable temporal logic to reason
about many processes. In Proceedings of the ninth annual ACM symposium
on Principles of distributed computing, pages 233–246, 1990.

[21] E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many
to the few. In CADE, 2000.

82

BIBLIOGRAPHY

[22] E Allen Emerson and Vineet Kahlon. Model checking guarded protocols.
In 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Pro-
ceedings., pages 361–370. IEEE, 2003.

[23] E Allen Emerson and Kedar S Namjoshi. On reasoning about rings. In-
ternational Journal of Foundations of Computer Science, 14(04):527–549,
2003.

[24] Javier Esparza. Keeping a crowd safe: On the complexity of parameterized
verification (invited talk). In 31st International Symposium on Theoreti-
cal Aspects of Computer Science (STACS 2014). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2014.

[25] Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of
broadcast protocols. In Proceedings. 14th Symposium on Logic in Computer
Science (Cat. No. PR00158), pages 352–359. IEEE, 1999.

[26] Peter Faymonville, Bernd Finkbeiner, Markus N Rabe, and Leander Ten-
trup. Encodings of bounded synthesis. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages 354–
370. Springer, 2017.

[27] Peter Faymonville, Bernd Finkbeiner, and Leander Tentrup. Bosy: An ex-
perimentation framework for bounded synthesis. In International Conference
on Computer Aided Verification, pages 325–332. Springer, 2017.

[28] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. International Jour-
nal on Software Tools for Technology Transfer, 15(5):519–539, 2013.

[29] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues.
A genetic programming approach to automated software repair. In Proceed-
ings of the 11th Annual conference on Genetic and evolutionary computation,
pages 947–954, 2009.

[30] Hadar Frenkel, Orna Grumberg, Corina Pasareanu, and Sarai Sheinvald.
Assume, guarantee or repair. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 211–227.
Springer, 2020.

[31] Steven M. German and A. Prasad Sistla. Reasoning about systems with
many processes. J. ACM, 39(3):675–735, 1992.

[32] James Goodwill and Wesley Matlock. The swift programming language. In
Beginning Swift Games Development for iOS, pages 219–244. Springer, 2015.

83

	Introduction
	Preliminaries
	System Model
	LTL
	Syntax
	Semantics

	Automata
	Automata on Finite Words
	Automata on Infinite Words

	Model-Checking

	Parameterized Repair of Guarded Protocols for Safety Properties
	Motivation
	Problem Statement
	Counter System
	Parameterized Repair

	Parameterized Model Checking
	Counter Systems as WSTS
	Parameterized Model Checking Algorithm
	Deadlock Detection

	Parameterized Repair Algorithm
	Reachable Error Sequence
	Constraint Solving for Candidate Repairs
	Parameterized Repair Algorithm

	Extensions and Limitations
	Beyond Reachability
	Beyond Disjunctive Systems
	Limitations

	Refinement-Based Parameterized Repair of Guarded Protocols for Liveness Properties
	Motivating Example
	Problem Statement
	Parameterized Model Checking for Liveness Properties
	Cutoff
	Parameterized Model Checking Algorithm

	Parameterized Minimal Repair
	Constraint Solving for Minimal Candidate Repairs
	Parameterized Minimal Repair Algorithm

	Deadlock Detection
	Extensions and Limitations

	Operation-Based Parameterized Repair of Guarded Protocols
	Motivating Example
	Problem Statement
	Operations
	Minimal Repair Transformations
	Parameterized Minimal Repair Problem

	Verification of Finite-State Systems
	Parameterized Minimal Repair
	Constraint Solving for Valid Annotation Functions
	Constraint Solving for Minimal Repairs
	Deadlock Detection
	Parameterized Minimal Repair Algorithm

	Extensions and Limitations

	Implementation and Evaluation
	Prototype Implementation
	Experimental Results
	Benchmarks
	Technical Details
	Observations

	Related Work
	Conclusion

