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Abstract

Execute-Only Memory (XOM) is a rarely used, but versatile memory protection scheme,
in which instruction fetches are permitted, but data reads and writes are not. In the
context of x86_64, it is mainly used in defensive schemes against code-reuse attacks.
Besides this however, there is very little research on applications that could benefit from its
unique memory protection capabilities. In my master’s thesis, I therefore investigate the
characteristics of XOM, with the primary goal of identifying novel application scenarios.
To this end, I present a set of software libraries that make XOM available to user-mode
programs and use them to conduct studies on XOM’s performance aspects and potential
attack vectors.
The results of this effort are two key observations: Firstly, XOM proves to be highly
resistant against transient execution attacks like Spectre and Meltdown. XOM can
thus serve as a component of low-cost mitigation schemes against them. Secondly, it is
possible to use XOM to hide cryptographic secrets from privileged local attackers. This
may provide an alternative to Trusted Execution Environments on platforms where such
facilities do not exist, with potential applications in Digital Rights Management.
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Chapter 1

Introduction

Execute-only Memory (abbreviated XOM, sometimes also called Execute-no-Read mem-
ory) describes memory areas from which instruction fetches are permitted, but data reads
and writes are not. Although this concept is quite simple, it is rarely utilized in practice,
as hardware support on modern platforms is limited. Today, its most prevalent use is in
embedded systems, where hardware manufacturers seek to protect their firmware from
reverse-engineering attempts by preventing direct code disclosure [1].
On x86-based architectures, XOM sees virtually no practical use at all. While it is an
integral component of many defensive schemes against code-reuse attacks [2–8], these
schemes are mostly academic in nature and have yet to see popular adoption. Apart
from this, there is very little research on applications for XOM on x86_64. This is
surprising, given XOM’s relative simplicity and high versatility. Therefore, this thesis
seeks to evaluate the properties and security guarantees of XOM on x86_64 on a more
fundamental level, with the primary goal of identifying novel use cases and application
scenarios. This involves a study of XOM’s performance implications and an evaluation of
potential attack vectors against XOM. Additionally, I present a set of software libraries
that make XOM available to user-mode programs on Linux, utilizing hardware features
like Memory Protection Keys (MPK) and Intel’s Extended Page Tables (EPT).
The results of this effort are promising: As XOM allows for storing secrets without
making them readable, it is a surprisingly effective countermeasure against transient
execution attacks like Spectre and Meltdown. Virtually all Spectre-like attacks require
their victim to have read access permissions to the target information, which is not the
case with XOM. Meltdown-like attacks can reveal secrets that are cached in specific
CPU-internal buffers, but no buffer that is directly influenced by instruction fetches
is known to be susceptible. If adequately implemented, XOM-based defenses can thus
mitigate these attacks.
The second key observation of this thesis is that XOM enforced by EPT can provide
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2 Chapter 1 Introduction

exceptionally strong security guarantees, which have yet to be fully utilized in defensive
schemes. As EPT is a component of Intel’s hardware virtualization extensions, its page
table entries are managed by the hypervisor, which means that guests by themselves are
unable to read secrets in XOM if the hypervisor does not allow for this. Consequently,
attackers cannot directly disclose the protected code, even if they fully compromise the
guest kernel. Yet, code in XOM is executable, and cryptographic secrets stored within
it, e.g., as immediate values, can thus still be processed. This is a security guarantee
typically only provided by Trusted Execution Environments (TEEs), which are not as
widely supported on consumer-grade processors as EPT [9].
Therefore, this thesis also explores methods of utilizing EPT-enforced XOM to perform
cryptography without disclosing secret keys to the guest, in hopes that these methods
can serve as a TEE replacement where such hardware facilities are unavailable. This
broad concept is called XOM-based Key Locking.
As part of this effort, I propose two novel concepts, which along with XOM, serve as the
foundation for Key Locking: Page Locking and Register Clearing. With Page Locking,
the hypervisor forcibly overwrites XOM pages before making them readable to guests
again during cleanup. Once a secret is ”locked” into XOM, it thereby becomes fully
inaccessible to data reads, even after XOM pages become readable again. This allows
guest kernels to ”forget” cryptographic secrets while preserving the capability to use
them by executing the code.
Register Clearing ensures that the kernel cannot retrieve these secrets from the register
state while they are in use. This is enforced by the hypervisor, which fully or partially
overwrites the registers when handling interrupts in an XOM page, thereby preventing
the guest kernel from inspecting the program’s internal state. While programs need
special recovery mechanisms to handle these register clearing events gracefully, this is
not difficult to implement in practice. To show that this approach is practical, I provide
implementations of AES-128-CTR and HMAC-SHA256 that can not only recover from
register clearing but also employ a range of defensive programming techniques to defend
against privileged attackers, thereby making key disclosure virtually impossible.
To help contextualize the significance of these results, this thesis also aims to identify
concrete applications that may benefit from XOM. Notable among these are Digital
Rights Management (DRM) systems, which may utilize Key Locking as a hardening
tool when enforcing the copyright of remotely distributed media files. Other potential
use cases include protection against reverse engineering, similar to the concept found in
embedded systems, and even providing tamper resistance for online video games.
Finally, this work also discusses the limitations of XOM in x86_64. For example, it
demonstrates that EPT-enforced XOM can incur runtime overhead at the microarchi-
tectural level, even if the protected software is not modified. Moreover, one particular
attack called Interrupt-driven Code Recovery enables privileged adversaries to reconstruct



Chapter 1 Introduction 3

protected code with a high degree of accuracy.
In summary, the primary contributions of this thesis are:

• The integration of EPT-XOM allocation into the Xen hypervisor. This implemen-
tation is made publicly accessible in hopes that it can aid future research.

• XOM-based Key Locking, a method of hiding encryption keys from privileged
attackers without utilizing a TEE.

• An evaluation of the performance implications of XOM on x86_64, demonstrating
that EPT-enforced XOM by itself can cause a non-negligible runtime overhead.

• The assessment of potential attacks against XOM’s security guarantees, highlighting
its resistance to transient execution attacks.

• The identification of previously unexplored applications of XOM in diverse security
contexts.





Chapter 2

Background

2.1 Execute-Only Memory

Although it is relatively uncommon in the context of contemporary computer systems,
XOM is hardly a new concept. Early implementations even predate the advent of the
microprocessor, with it being supported by the Multics operating system for the GE 645
mainframe computer [10]. The intended use case for this feature in Multics is privacy
preservation, for example by preventing unauthorized access to the code of a classroom
grading program.
While similar privacy-preserving techniques remained the singular use of XOM in the
following years, the growing accessibility and complexity of computer systems led to
an eventual diversification in XOM’s potential applications. For example, Yarvin et
al. propose a method to increase the performance of inter-domain procedure calls by
mapping the memory of multiple domains into one 64-bit address space [11]. In this
scheme, segmentation is achieved through anonymity, meaning domains are unaware of
the other domains’ locations in virtual memory and can thus not access them. Also,
scanning the address space for other domains is impractical due to its large size. To still
allow for controlled inter-process communication, a publicly known ’intermediary’ code
section redirects calls between domains, typically in the form of a jump table. However,
to prevent the destination addresses from leaking, this code section requires protection
from unauthorized read accesses, which necessitates the use of execute-only memory.
Another application for execute-only memory is the protection of intellectual property.
For instance, Lie et al. propose an execute-only scheme based on memory encryption [12],
which aims to prevent unauthorized redistribution and manipulation of software. In their
suggested XOM architecture, specialized cryptography hardware sits between external
memory and the processor’s instruction decoder, allowing the processor to decrypt the
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6 Chapter 2 Background

instruction stream while loading it from memory. When executing an encrypted program
on this architecture, the processor first loads the program’s unique key from a special
header section. This key is itself encrypted with an asymmetric cipher, the private
key of which is only known to the processor’s microcode. Hence, only the processor
can decrypt the program, whereas a third party can only encrypt new code. While
this approach does not prevent a potential attacker from reading or overwriting the
memory contents, it makes it exceedingly difficult to redistribute or manipulate the
code in any meaningful way, thus achieving the goal of enabling execution while denying
direct access. Memory encryption has since seen widespread adoption as a component of
trusted execution environments [13] and secure virtualization techniques [14], but its use
for creating execute-only memory remains uncommon due to its performance overhead
and extensive hardware requirements [15, 16].
More recently, XOM was proposed as a countermeasure against code-reuse attacks [2].
For exploitation techniques like return-oriented programming to be feasible, an attacker
must have access to the code of the target binary. In scenarios where this is not the case,
they must hence first mount a code-disclosure attack, which execute-only memory can
effectively prevent. It has therefore seen use in mitigation schemes for JIT-ROP [17],
Blind-ROP [18], and other exploitation techniques involving code-disclosure. XOM also
sees use as a component of leakage-resistant diversity schemes, which combine XOM
with code diversification techniques to mitigate code reuse for binaries that are known to
potential attackers (see Section 7.2).

2.2 Protection Keys

Despite its many applications, support for XOM on the x86_64 architecture remains
limited. The only way to create execute-only regions on a native, non-virtualized x86_64
system without employing software-implemented fault handlers is through the Memory
Protection Keys (MPK) feature [9, 19], which exists on some Intel CPUs since the
introduction of the Skylake architecture, and on some AMD CPUs since the introduction
of Zen 3.
On CPUs supporting MPK, 4- and 5-level page table entries contain a 4-bit field called
the Protection Key, each possible value of which is associated with a configurable set of
restrictions on how a page can be accessed. Software can modify these restrictions in a
special 32-bit register called pkru, which can be read and written to using the rdpkru
and wrpkru instructions respectively. In this register, each of the 16 possible protection
keys has a write-disable bit and a read-disable bit. Applications can configure these
bits to control reads and writes to pages tagged with a specific protection key. However,
instruction fetches are not affected by this, so setting both bits for a given protection
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key results in XOM.
What sets MPK apart from more traditional memory protection mechanisms is that
its configuration is accessible to user-mode applications. Access to the pkru register
is not restricted by privilege level, allowing an application to enforce its own memory
segmentation rules without having to invoke the kernel. MPK is therefore also known as
the Protection Keys for User-Space (PKU) feature.
From a performance-oriented standpoint, this concept makes sense: In a database
containing highly sensitive data such as bank accounts, an out-of-bounds write access
caused by a programming error could have disastrous consequences. It is therefore useful
to restrict access to memory regions containing such data, permitting modifications only
for a short time when explicitly necessary. However, enforcing these restrictions using
traditional mechanisms would require at least two kernel invocations per transaction,
causing an unacceptable performance overhead. MPK solves this issue by reducing the
effort needed to modify the permissions to a single register access. Hence, MPK is
most commonly found on CPUs aimed at data centers, which are more likely to run
applications benefiting from such a mechanism.
Unfortunately, since MPK as a concept is designed to solve safety issues rather than
security issues, employing it for any security-related purpose is challenging. Initial
attempts to achieve secure intra-process memory isolation with MPK-based sandboxes [20,
21] were quickly shown to be susceptible to a variety of powerful attacks, some of which
are still unaddressed by more recent techniques [22]. These attacks are possible, among
other factors, due to inconsistent enforcement of MPK permissions in the kernel, mutable
file-backed memory regions, and potential abuse of the sigreturn mechanism [23]. XOM
schemes based on MPK are susceptible to the same weaknesses, and should therefore be
treated with caution. However, due to the low performance cost associated with using
MPK, and its relative simplicity, it can still be highly useful in the context of a weak
attacker model, or as a redundancy layer in a multi-level security concept. As discussed
later in this thesis, it can also serve as a defense mechanism against transient execution
attacks (see Section 6.1.2).

2.3 Hardware-assisted Virtualization

To fully virtualize a system, a hypervisor must provide a virtualization environment in
which even kernels that are unaware of being virtualized can successfully execute. How-
ever, this comes at a steep performance cost with traditional virtualization techniques,
in which the guest kernel is executed with user-mode privileges.
On many older systems, the most popular virtualization technique is therefore an alterna-
tive method called para-virtualization (PV). This scheme uses a hypervisor-specific API
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(called para-API) to run expensive to virtualize tasks in the hypervisor’s context rather
than the guest’s [24], thus drastically increasing virtualization performance. However,
this scheme also has a detrimental impact on compatibility, as a given hypervisor’s
para-API is typically only supported by a small selection of guest kernels.
To resolve this trade-off between compatibility and performance, CPU manufacturers
today are integrating facilities into their processors that can handle most virtualiza-
tion tasks in hardware, thereby eliminating the need for a para-API altogether [9, 19].
Although implemented nearly identically by both Intel’s and AMD’s CPUs, these exten-
sions have different names depending on the manufacturer, being called virtual-machine
extensions (VMX) by Intel and secure virtual-machine (SVM) by AMD. For consistency,
mechanisms added by VMX and SVM under different names are referred to using Intel’s
VMX naming convention for the remainder of this thesis.
At its core, VMX introduces a mode of operation for VM guests named VMX non-root
operation, which from the perspective of a guest kernel, is nearly indistinguishable from
native execution. For instance, the guest may set up and manage its own paging struc-
tures, read and modify control registers, and handle interrupts directly, all of which are
tasks that would require the assistance of the hypervisor in more traditional virtualization
techniques.
The main difference between VMX non-root and native operation is that interrupts,
faults, a task switch, or certain instructions like cpuid can cause so-called VM exits, which
transfer control from the guest to the hypervisor. Additionally, VM exits implicitly save
information about the processor’s state, and the precise exit reason in a special memory
region called the Virtual Machine Control Structure (VMCS). Using this information,
the hypervisor can handle VM exits similarly to how a classical operating system would
handle an interrupt. Once this process is done, it transfers control back to the guest
with a so-called VM entry.
Which events precisely should cause a VM exit is highly configurable. A hypervisor may,
for example, decide to handle the guest’s page faults, while letting the guest handle gen-
eral protection faults on its own without interference. Guests can also use the vmcall and
vmfunc instructions to trigger a VM exit on purpose, allowing hypervisors to implement
a hypercall API for tasks such as communication with other guests.
To further improve performance, vmcall and vmfunc are sometimes used to mount PV on
top of VMX, a technique called PVH, or PVHVM [25]. However, in contrast to classical
PV, a PVH hypercall API is typically strictly required for correct execution, allowing
for the virtualization of microkernels without PV support such as Minix [26] or Fuchsia
OS’s Zircon kernel [27].
Although hardware-assisted virtualization is not necessarily faster than PV [28], it far
surpasses PV in popularity today. This is largely because PV requires a much higher
implementation effort for both the hypervisor and guest kernel, thus making it unpopular
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with developers. It is also far more limited in its capabilities compared to the highly
configurable environment created by VMX. Therefore, modern hypervisors for x86_64
rely almost exclusively on hardware-assisted virtualization. A notable exception to this
is Xen, which supports PV, hardware-assisted, and PVH virtualization [25, 29].

2.4 Extended Page Tables

An important challenge of creating a fully virtualized environment with VMX is the
management of virtual memory. Guests expect to be able to manage their own page
tables, which normally requires access to physical memory. However, this stands in
conflict with the isolation goals of virtual machines, which makes it impossible to create
these page tables without assistance from the hypervisor.
VMX and SVM solve this problem with a mechanism called Second Layer Address
Translation (SLAT), which introduces an additional address translation step for virtual
machines. When a memory access is performed with SLAT, guest-managed page tables
are used to translate the virtual address to a so-called guest-physical address. This
address is indistinguishable from a physical address to the guest kernel, and can be used
in the same way. Meanwhile, the hypervisor manages a second set of page tables for
translating the guest-physical address to a hardware-backed host-physical address. A
memory access therefore involves two address translations, once from guest-virtual to
guest-physical and once from guest-physical to host-physical.
On Intel platforms, the hypervisor’s second set of page tables are called Extended Page
Tables (EPT) [9]. What is notable about EPT is that page table entries follow a different
format than with the more conventional 4- and 5-layer page tables, which allows for
the creation of XOM mappings. An analogous mechanism, called Nested Paging, exists
for AMD processors [19]. While Nested Paging does not support XOM directly, AMD’s
SEV-SNP extensions allow for the creation of XOM through a functionally equivalent
feature called Reverse Map Tables (RMP).
The primary advantage of using these page-table-based XOM schemes are the significantly
stronger security guarantees when compared to MPK. Whereas an unprivileged adversary
can disable MPK with just a single instruction, they would have to breach two privilege
boundaries to do the same with EPT. It is therefore not necessary to use complex
sandboxing techniques to guarantee security. However, this comes at a performance cost.
Allocating EPT-based XOM requires not only a system call, but also a hypercall, which
makes allocation of such memory regions much slower than conventional allocations.
Also, although XOM instruction fetches are not slower than other memory accesses in
a virtual machine, virtualization adds a performance overhead by itself, making the
technique undesirable for some performance critical applications. The results of this
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thesis also suggest that code address translations for EPT-enforced XOM are slower,
which may result in runtime overhead for applications that span large numbers of code
pages (see Section 5.1.1).



Chapter 3

Key Locking

EPT-enforced XOM is an exceptionally strong security mechanism. As it is managed by
the hypervisor, even guest kernels cannot directly disclose its contents. An adversary can
therefore not access data stored within such memory regions, even when the guest is fully
compromised. This is a security guarantee typically only provided by hardware TEEs,
a feature mostly restricted to enterprise-focused CPUs in the context of x86_64. On
consumer-level CPUs without TEE support, leveraging the strong security guarantees of
EPT-XOM to create protection schemes similar to TEE-enforced confidential computing
is therefore a highly interesting prospect.
This chapter proposes XOM-based Key Locking, a set of hypervisor-based protection
measures and programming techniques that allow for confidential cryptography without
relying on a TEE at all. Encryption keys with Key Locking are stored in XOM-protected
code rather than data, which allows guests to use them through code execution, but
prevents direct read accesses. Due to EPT-XOM’s strong security guarantees, attackers
cannot disclose these protected encryption keys, even if they manage to fully compromise
the guest kernel. At the same time, the code sections containing the keys are executed
in the context of a regular user-mode process, requiring no expensive context switches
or inter-domain communication to perform confidential cryptography tasks. Also, as
the guest does not have direct access to the key, the hypervisor can enforce fine-grained
policies on which keys a guest can use at which time, and can revoke the permission to
use specific keys even after they were made accessible to the guest.
At its core, Key Locking works by encoding encryption keys as immediate values for
mov instructions. See Figure 3.1 for a simple illustration of this idea. After this code
is initialized, usually at runtime, it is marked as XOM, which prevents the guest from
accessing the key again. If the guest is compromised at a later point, the key is therefore
protected from disclosure. Alternatively, the code can also be initialized by the hypervisor,
so that the guest never has direct access to the key, but can use it regardless.

11



12 Chapter 3 Key Locking

1 .data
2 plain_text: .long 0xcafebabe
3 cipher_text: .long 0x0
4 key: .long 0xdeadbeef
5

6 .text
7 encrypt:
8 // Load key and plain text
9 mov plain_text(%rip), %edi

10 mov key(%rip), %esi
11

12 // "Encrypt"
13 xor %edi, %esi
14

15 // Store cipher text to memory
16 mov %esi, cipher_text(%rip)
17

18 ret

(a) Normal implementation

.data
plain_text: .long 0xcafebabe
cipher_text: .long 0x0
// Key is now stored as code

.text
encrypt:

// Load key and plain text
mov plain_text(%rip), %edi
mov $0xdeadbeef, %esi

// "Encrypt"
xor %edi, %esi

// Store cipher text to memory
mov %esi, cipher_text(%rip)

ret

(b) With key in code instead of data

Figure 3.1: Illustration of Key Locking with a XOR-based toy cipher (AT&T syntax).

Unfortunately, XOM by itself is not enough to reliably protect encryption keys from
privileged attackers. For example, if the guest kernel interrupts the code in Figure 3.1
after the instruction in line 10 is executed, it can simply read the key from the esi register.
To prevent this kind of leakage, the hypervisor must overwrite the registers when an
interrupt occurs in a XOM page. This approach is called Register Clearing.
Additionally, implementations of cryptographic algorithms with Key Locking have to
follow a strict set of rules to prevent unintended disclosure of key material. For instance,
they cannot write confidential information to regular memory, as this would make it
trivially accessible to the guest. While this is easy with the toy cipher in Figure 3.1, it
can become quite challenging for real-world ciphers. Also, they have to ensure that their
control flow cannot be easily manipulated by a privileged attacker, which among other
things, means that they cannot use indirect branches at all.
The following sections describe each of these sub-techniques in more detail. Evaluations
of the implementation challenges and performance implications when using Key Locking
with real ciphers follow in Chapter 4 and 5.

3.1 Page Locking and Register Clearing

Apart from side-channel attacks and control-flow manipulation, there are two potential
ways in which guests could disclose secrets that are stored in XOM: They can either
obtain read permissions to the XOM region or interrupt the program while secrets are
in use and then disclose them from the register state. Therefore, the hypervisor must
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ensure that neither of the two can occur under any circumstance.
The solutions I propose for this problem are Page Locking and Register Clearing. Page
Locking simply means that a XOM page is forcefully overwritten before it is made
readable to the guest again. This ensures that its contents cannot be disclosed, while
also allowing the guest to free and reuse XOM pages after it is done using them. The
only other alternative is keeping the pages as XOM indefinitely, which would eventually
drain the guest of its usable memory when allocating new XOM.
Register Clearing means that the hypervisor overwrites the guest’s registers before
transferring control back to the guest when an interrupt occurs while executing a XOM
page. Which registers precisely it must overwrite depends on what the program considers
to be confidential: For example, if control flow structures should be kept secret, it may
be necessary to perform Full Register Clearing. This causes the hypervisor to overwrite
all registers, including the instruction pointer and the conditional flags. However, for
many applications, especially in cryptography, the control flow is well known and not
affected by e.g., the encryption key. In certain cases, it can hence also suffice to clear
only a part of the register state.
Most experiments discussed in this thesis therefore employ Vector Register Clearing, in
which the hypervisor overwrites only the AVX registers and two general-purpose registers.
This makes it much easier to recover from clearing events, as the instruction pointer and
most general-purpose registers remain unaffected. Of the two general-purpose registers
that are overwritten, one is required for transferring data from immediate values in code
to the vector registers. The other register serves as a signal register, which the hypervisor
fills with a magic value during register clearing. By checking the value in the signal
register at regular intervals, the program can determine whether register clearing took
place, and initiate recovery procedures when needed.
However, Register Clearing also comes at a significant disadvantage: It requires that
programs expect clearing events to occur, and can recover from them gracefully. It can
hence only be applied to software that is specifically designed with Register Clearing in
mind. Note that this is not a problem for Page Locking, as most software does not expect
freed memory pages to retain their contents. This makes it possible to run complex
applications in page-locked XOM with few modifications. Therefore, there are many
scenarios in which programs may want to use Page Locking, but not Register Clearing.
To allow for this without endangering confidentiality, the hypervisor treats XOM pages
as a simple state machine with three transitions that guests can initiate: Lock, unlock
and mark. See Figure 3.2 for a schematic of this. Lock transforms a normal memory page
into XOM, whereas unlock overwrites the page and makes it readable again. A XOM
page can additionally be marked, which enables Register Clearing. Note however that
unmarking a marked page is not possible, as this would make the security guarantees of
Register Clearing easily circumventable. Guests must instead use the unlock operation to
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XOM + Register
Clearing

lock mark

unlock + overwrite

Figure 3.2: State transitions of an EPT-XOM page.

disable Register Clearing, thereby also overwriting the page. This way, the “protection
level” of a memory page can only increase, with operations reducing it destroying the
secrets stored within.

3.2 Registers as Memory and Encrypted Backups

To ensure confidentiality, no secret data whatsoever can be written to non-XOM memory,
as this would always make it accessible to the guest. Confidential information such as
encryption keys are therefore kept in the register state at all times. While the capacity
of general-purpose registers is usually not large enough to store secrets and perform any
meaningful computation at the same time, the vector registers provide significantly more
storage space [30]. With AVX2, this gives programs 512 bytes of confidential “memory”
to work with, which is ample for many cryptographic algorithms. AVX512 extends
this capacity to 2048 bytes, making it feasible to perform more involved computations.
The practicality of this technique was already demonstrated by previous works, which
primarily utilize it to protect encryption keys against cold-boot attacks (see Section 7.4).
What is unique about this work’s Key Locking approach is the Register Clearing mecha-
nism. As mentioned in the previous section, Vector Register Clearing ensures that the
kernel cannot trivially access the AVX registers through interrupts, thereby preventing
the disclosure of cryptographic material. However, this also entails that all progress of a
computation is lost when an interrupt occurs. While this is not a problem for programs
with a short runtime, an interrupt becomes increasingly likely as the runtime grows larger.
With large runtimes, or in environments where high contention for CPU resources causes
frequent interrupts, this makes it virtually impossible to run XOM-protected programs
with Register Clearing to completion. Therefore, XOM-protected programs that keep
secrets in the register state must also have some means to save their progress to regular
memory without endangering confidentiality. Data integrity might also be of importance,
depending on the application.
For lack of more efficient methods, programs must solve these issues with cryptography.
Fortunately, strong encryption is made easy by the AES-NI extensions, which can effi-
ciently encrypt AVX registers with little added complexity [31]. Using AES-NI, AES can
even be implemented such that the upper halves of the AVX registers remain untouched,
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making it possible to run while preserving 256 bytes of another algorithm’s internal state.
If integrity guarantees are required on top of confidentiality, programs can additionally
employ an authenticated block mode such as the Galois/Counter mode (GCM), which is
relatively easy to implement with AVX [32]. Using these methods, programs can securely
store any confidential data to memory, allowing them to restore their progress from a
backup when register clearing events occur.
The only remaining challenge in this context is to generate a cryptographically random
Initialization Vector (IV), which is a parameter in most block modes for AES. If the IV
is predictable, or reused for more than one encryption, many block modes become prone
to powerful attacks like keystream reuse [33], some of which can break confidentiality
with little effort.
There are two possible ways to solve this problem: Programs can either store a confi-
dential seed in XOM for usage with a cryptographically secure pseudorandom number
generator (CSPRNG), or if available, use the processor’s hardware random number
facilities. Out of the two, the latter is usually more practical, as the former method
requires programs to keep track of the CSPRNG’s state to ensure that the same IV
is not used twice. This is difficult, as storing it in the registers may cause it to be
overwritten, and storing it in non-XOM memory may allow for external manipulation.
Where supported, XOM-protected programs should therefore use hardware facilities
instead of software for creating the IV.

3.3 Protecting Control Flow

While Register Clearing prevents guests form trivially disclosing the register state through
interrupts, there are other means to leak this data. If an adversary can somehow hijack
the control flow, they could redirect it to a disclosure primitive. In the context of Key
Locking, preventing this is challenging, as we must assume the adversaries to have kernel
privileges, or at least the capability to execute arbitrary code in the same process. We
cannot rely on the integrity of non-XOM memory for correct control flow, as these
memory regions are under the complete control of the guest kernel, and can be modified
in arbitrary ways.
As a consequence, programs cannot use indirect branches that load their targets from
memory, such as ret instructions. The target address may have been tampered with by
either the kernel or a parallel thread, thus allowing an adversary to redirect control flow
to a chosen address. However, this does not mean that function-like structures cannot
be used at all. See Figure 3.3 for examples of how to create such structures without
using memory. Unfortunately, the only reliable workaround is to abandon the concept
of a return address altogether, replacing the return instruction with direct jumps. This
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1 bar:
2 // ...
3 test %r8, %r8
4 jz .Lreturn_from_bar1
5 jmp .Lreturn_from_bar2
6

7 foo1:
8 mov $0, %r8
9 jmp bar

10 .Lreturn_from_bar1:
11 // ...
12

13 foo2:
14 mov $1, %r8
15 jmp bar
16 .Lreturn_from_bar2:
17 // ...

(a) Only direct jumps

bar:
// ...
jmp *%r8

foo1:
lea .Lreturn_from_bar1(%rip), %r8
jmp bar

.Lreturn_from_bar1:
// ...

foo2:
lea .Lreturn_from_bar2(%rip), %r8
jmp bar

.Lreturn_from_bar2:
// ...

(b) Return address in register

Figure 3.3: Examples of how to perform a function call without accessing memory
(AT&T syntax). Only option (a) is reliably secure, as option (b) can make the program

vulnarable to Spectre v2.

option does not scale well with the amount of possible return targets, as every possible
return target requires its own direct jump. In cases where the amount of return targets
is large, it might therefore seem tempting to still use a return address, but to store it in
a register instead of memory.
However, this bears another risk: As returning still requires an indirect branch instruction,
the program becomes vulnerable to Spectre v2, potentially allowing an attacker to redirect
speculative control flow to a disclosure gadget. Using established mitigations like retpoline
to prevent this is not an option, as retpoline depends on a return instruction [34]. Indirect
branches of any kind should thus be avoided completely. Note that while direct branches
may still be vulnerable to Spectre v1, programs can ensure that all possible branch
targets lie within the XOM-protected program. Defensive programming can thus prevent
speculative control flow redirection to a disclosure gadget. With Spectre v2, this is not
possible, as the attacker can freely choose the speculative branch target.
Another opportunity for leaking the register state arises when the program crosses a
code page boundary. Although the guest kernel cannot access EPT-XOM pages directly,
it still has absolute freedom in where to map them in a process’s virtual address space.
Therefore, if a XOM-protected program loads secrets into the register state, and then
crosses a code page boundary, the next page can be any page chosen by the guest
kernel. The kernel can thus disclose the register state by inserting its own code there.
Unfortunately, this limits the maximum size of a XOM-protected program to just a
single code page, unless secrets are encrypted or otherwise protected from disclosure. For
complex programs, it may therefore be necessary to use 2 MB pages instead of the more
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conventional 4 kB pages.
In summary, a program in EPT-XOM aiming to protect its control flow from privileged
attackers must adhere to the following rules:

• Programs must expect every value read from non-XOM memory to have been
tampered with, and can thus not rely on them for correct control flow.

• The program cannot cross code page boundaries with secrets in the register state.

• Indirect branches cannot be used in any capacity.

• Programs must be adequately hardened against Spectre attacks, meaning that
speculative misprediction of branch targets must not allow for leakage of secrets.

Along with the restrictions on what programs can write to non-XOM memory, following
these rules constitutes the greatest challenge when implementing Key Locking for real-
world algorithms.
However, there is one additional avenue for redirecting control flow, which they do not
cover: A privileged attacker could remap a different code page to the XOM page’s virtual
address while it is being executed, and the registers contain confidential information. On
most processors, this does not endanger confidentiality, because the L1 iTLB typically
retains its entries until it is either flushed, or its entries are evicted [9]. With the
XOM-protected program covering only a single code page, this cannot occur unless the
program is interrupted, and the secrets are overwritten. Therefore, the change cannot
become effective while secrets are being handled.
However, note that this is an architecture-specific property, and there are no guarantees
that this assumption holds for every processor. It may for example be possible to evict
entries from the L1 iTLB through Simultaneous Multithreading, with a potential victim
sharing this cache with an attacker thread. The security of Key Locking therefore depends
on the assumption that the L1 iTLB is not shared between hyperthreads, and thus cannot
be externally modified without an interrupt. While this assumption generally holds
for recent Intel processors [35], this is not the case with some processors by AMD[36].
Depending on the underlying hardware, it may therefore still be possible to hijack the
control flow of a XOM-protected program, even if it follows all of the above rules. Note
however that this attack vector is only available to privileged attackers, and Key Locking
may still be useful as a defensive measure against intra-process attacks on affected
hardware.
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Implementation

Of the aforementioned methods for creating execute-only mappings on x86-based archi-
tectures, only MPK is supported by a commercially used operating system, with Linux
making it available through the pkey_mprotect system call [37]. EPT-based XOM, on
the other hand, was only implemented for research purposes in the past. It is hence
not supported by any major hypervisor or operating system, and none of the research
implementations [3, 5, 7, 38] are publicly available.
Therefore, this work utilizes a custom implementation of EPT-XOM, which consists of a
series of patches to the Xen hypervisor [29], a Linux kernel module called modxom, and
a user-mode library named libxom. See Figure 4.1 for a schematic overview of how these
components interact. When all is set up correctly, libxom allows user-mode programs to
allocate and manage EPT-XOM through a simple API, and even to migrate their own
code into XOM at runtime without endangering stability. To allow for Key Locking, this
implementation also provides Page Locking and Register Clearing. The following section
describes the overall design and implementation challenges of this system, and how said
challenges are solved.

4.1 Modifications to the Xen Hypervisor

4.1.1 Hypercall Interface

To adequately implement EPT-XOM allocation and Key Locking, the hypervisor must
make the lock, mark and unlock operations discussed in Section 3.1 available to guests.
The easiest way to implement this functionality is through a hypercall, which the guest
can explicitly invoke when hypervisor privileges are required. Therefore, the patches
for Xen implement them as an extension of the mmuext_op hypercall. As a part of
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Hypervisor Guest Kernel Guest User-Space

modxom

Application

libxommmuext_op mmap

Figure 4.1: A schematic overview of the individual components that make up the
EPT-XOM implementation.

Xen’s para-API, this hypercall typically provides MMU-related functionality, such as
flushing the TLB or installing a new page-table root address in the CR3 control register.
However, since hardware-assisted virtual machines can usually perform these tasks
without explicitly requesting the hypervisor’s assistance, it returns an error code when
invoked by such a guest.
For the EPT-XOM implementation, this behavior was modified so that the hypercall
can also serve VMX guests. To perform any of the above operations, the guest kernel
can then simply issue a mmuext_op hypercall, and pass the guest-physical address of a
physical page to perform the operation on. Alternatively, the guest can also specify a
range of multiple guest-physically contiguous pages, which greatly reduces the number of
hypercalls that the guest needs to perform when managing larger XOM ranges.

4.1.2 Register Clearing Modes

The patched Xen hypervisor supports both Full Register Clearing and Vector Register
Clearing. Guests can specify the desired Register Clearing mode when issuing mark
operations, but changing the Register Clearing mode once a page is marked is no longer
possible. When the hypervisor handles a VM exit, it translates the guest-virtual address
in the rip register to a guest-physical address using the guest’s paging structures and
checks whether the resulting page frame number corresponds to a previously marked
XOM page. Depending on whether or not this is the case, Xen then zeroes the guest
registers according to the clearing mode. The general purpose registers overwritten with
Vector Register Clearing are r14 and r15, with r15 being the signal register.
Note that for Register Clearing to be reliably secure, Xen must actively handle all of the
guest’s interrupts and faults, including those that the guest could normally handle by
itself. A potential threat to security in this context is the virtual interrupt controller
(vAPIC) that many processors with hardware virtualization support [9]. This hardware
facility allows guests e.g., to perform inter-processor interrupts by themselves, which
would otherwise require the hypervisor’s assistance. What is problematic about the
vAPIC is that it delivers interrupts directly to the guest kernel, giving the hypervisor no



Chapter 4 Implementation 21

chance to enforce Register Clearing policies. For this reason, the patched Xen hypervisor
disables the vAPIC by default, which guarantees security, but incurs a slight performance
penalty on guests (see Section 5.1.3 for a more comprehensive elaboration on this).

4.1.3 Handling EPT Violations

Any violation of the permissions specified in the EPT causes an immediate VM exit. By
retrieving the exit reason from the VMCS, Xen can then determine that the exit was
caused by an EPT violation, and take appropriate action.
In cases where the EPT violation is caused by a read or write access to XOM, the
modified Xen hypervisor simply injects a general protection fault into the guest. This
type of exception also occurs for unauthorized accesses to memory protected by the
conventional 4- and 5-level page tables, and most guest kernels thus handle it in the
same way. On a Unix-like operating system, this results in the delivery of a segmentation
fault signal to the offending process. Processes can handle this gracefully by setting up a
signal handler, but crash otherwise.

4.2 Linux Kernel Module

To make EPT-based XOM available to user-mode programs, the guest kernel must
provide a user-mode interface to the hypervisor’s newly added functionality. While
creating this interface may seem trivial on the surface, allocating memory areas that
not even the kernel can access introduces some issues, which may endanger the kernel’s
stability. For example, a XOM page cannot be swapped out to disk, and any attempts to
do so lead to error conditions that the Linux kernel cannot recover from. Similar issues
arise when a process using XOM pages terminates without freeing them first, and the
kernel reassigns these pages to a different process without invoking the hypervisor first.
Unfortunately, there are many such scenarios in which the Linux kernel may attempt to
read from a XOM page. Some can even be triggered by the user through system calls,
enabling attackers to perform denial-of-service attacks on an improperly implemented
XOM interface. Reviewing and modifying all of them would require substantial develop-
ment effort, and is hence out of scope for this thesis. For this reason, the EPT-XOM
implementation may lead to unexpected crashes and should not be used on production
systems.
However, many of the aforementioned problems can be mitigated by implementing a
separate in-kernel memory allocator, and restricting XOM to memory allocated this way.
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Such a system has several advantages:

• A user-supplied code page may already be mapped into the address space of multiple
processes, potentially even of different users. Were we to lock such a page, these
other processes may crash as a result. However, this cannot occur when we force
the user to allocate pages specifically for XOM. Note that a XOM page may still be
used in multiple address spaces this way, but only in cases where a parent process
allocated it as a XOM page before forking.

• The allocator can implement the mmap system call in conjunction with a file
descriptor. Should a program using XOM pages terminate for any reason, including
through a crash, we receive a notification when the file descriptor is closed. This
allows us to reliably release any XOM pages that are still in use at this point.

• We have full control over the memory backing. For example, the kernel could crash
if a XOM memory range were backed by a Unix file object instead of guest-physical
memory. This is because, depending on how the underlying mechanism of the file is
implemented, locking its physical memory likely can lead to unauthorized read and
write accesses in the kernel. If we were to allow locking arbitrary memory supplied
by the user, such cases would need to be taken into consideration.

• Because of the above, we can safely use mechanisms that prevent XOM pages from
being swapped out to disk.

modxom, the kernel module providing EPT-XOM functionality to user-mode applications,
hence implements its own memory allocator. User-mode programs can use this allocator
by first opening the /proc/xom file that modxom creates during initialization, and then
using the file descriptor with mmap. Operations like locking or freeing XOM pages are
then performed by writing a command struct to the file descriptor. See Figure 4.2 for an
example of this workflow.
Unlocking pages works analogously with a different command code in modxom_cmd::cmd.
Note that this does not unmap unlocked (and thus overwritten) pages from the address
space, which requires a separate call to munmap. At the same time, munmap does
not unlock the page if it is still locked. Because modxom’s in-kernel memory allocator
keeps the page allocated in this state until the process terminates, unmapping locked
XOM pages can lead to memory leaks. These memory leaks are hard to detect, as
the improperly unmapped pages are associated with the kernel instead of a user-mode
process. Programs using modxom must therefore make sure to always unlock XOM pages
before unmapping them. Closing the file descriptor or terminating the process results in
modxom immediately unlocking the process’s remaining XOM pages, including those
that were unmapped while locked.
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1 // Open the XOM file
2 int xomfd = open("/proc/xom", O_RDWR );
3
4 // Allocate a ( still writable ) XOM page
5 char* xom_page = mmap(NULL ,
6 1 << 12,
7 PROT_READ | PROT_WRITE ,
8 MAP_PRIVATE ,
9 xomfd , 0);

10
11 // Initialize the page with code
12 memcpy (xom_page , code_pointer ,
13 code_size );

(a) Allocation of a XOM page

1 // Initialize command struct
2 struct modxom_cmd cmd = {
3 .cmd = MODXOM_CMD_LOCK ,
4 . num_pages = 1,
5 . base_addr = xom_page ,
6 };
7
8 // Lock the page
9 write (xomfd ,&cmd , sizeof (cmd ));

10
11 // Reads / writes now cause a #GP fault
12 char v = xom_page [0];
13 // Unreachable

(b) Locking a XOM page

Figure 4.2: Using modxom in a user-mode program on Linux

4.3 User-Mode Library

While providing a system call-based user mode interface to manage page-locking is
technically sufficient for mounting experiments, using these system calls directly becomes
unwieldy with more complex tasks. As part of this thesis, I therefore present libxom, a
small Linux user mode library serving as an easy-to-use interface for page-locking. If
EPT-enforced XOM is not supported, libxom can also emulate Page Locking behavior
with MPK for testing. In summary, the libxom library provides the following features:

• Safe de/allocation of EPT-enforced XOM through a unified interface

• Simplified handling of sub-page XOM

• Functions for migrating a process’s code into XOM at runtime

• An easy-to-use primitive for recovering from Register Clearing events

Furthermore, libxom is accompanied by the xom command line utility, which can launch
any process with its entire code in XOM.
At the core of libxom is the concept of a XOM buffer, which is backed by either MPK or
EPT-based XOM. By default, libxom chooses EPT over MPK if modxom and modified
Xen are available, but the user can explicitly request MPK-enforced XOM if so desired.
The XOM buffer itself is represented as a pointer to an anonymous struct. To write into
the XOM buffer, lock it or mark it for Register Clearing, the application can use this
pointer as a parameter in libxom’s API. A pointer to the XOM pages themselves is only
returned by the lock function. This way, there is no risk of the user calling a function in
XOM before locking it. Allocating and using sub-page XOM buffers works analogously,
but utilizes a separate set of API functions. To illustrate how XOM buffers can be used,
Appendix A contains the code for a simple demo program, which allocates and utilizes a
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XOM buffer with a range of libxom’s functionalities.
Furthermore, libxom can migrate a process’s existing code into XOM through the
xom_migrate_all_code function. When called, this function temporarily remaps all
executable memory ranges to a different location in the virtual address space. It then
allocates XOM in the code’s original location, copies the code into it, and locks it before
resuming normal execution. Once this is complete, all memory in the program’s address
space is either readable or executable, but never both. All instances of the original
code are unmapped or overwritten, thereby making it fully inaccessible to reads. The
only exception to this is the processes vDSO section [39], the correct usage of which
necessitates introspection. By declaring a constructor function [40], which is called when
libxom loads and thus executes before main, libxom can even perform the migration
before a program’s own code is first invoked. As part of this procedure, libxom also
installs hooks for the dlopen and dlmopen functions to migrate libraries loaded at runtime
into XOM without necessitating code changes. If it is requested in the environment
variables, a program using libxom can therefore launch with its entire code in XOM.
Using this feature, the xom utility accompanying libxom can launch any dynamically
linked ELF executable in XOM from the command line, without having to modify
any code. If the target executable does not link to libxom itself, xom forces glibc’s
dynamic linker [41] to load it into the address space by configuring the LD_PRELOAD
environment variable. Unless the environment variables are actively modified, this also
extends to all of the target executable’s child processes, making it possible to run even
complex applications entirely in XOM.
Note that this usually does not endanger stability, as modern compilers strictly separate
code and data for performance reasons [42]. Crashes generally only occur for programs
written in assembly languages, where this separation may not be so strict. A notable
example of this is OpenSSL, which requires extensive refactoring to run reliably in XOM.
Finally, libxom provides an easy means to recover from Register Clearing events. Using
the expect_full_register_clear macro, developers can declare a code block that
simply repeats if the registers are cleared during execution. See Appendix A for an
example.
Internally, the macro creates a non-local jump target with the C standard library’s setjmp

function, thereby saving most of the program’s relevant state to memory. Additionally,
it sets up a signal handler for segmentation faults, which are triggered when a program
attempts to fetch code from the NULL page after a Register Clearing event. From there,
the program performs a non-local jump to the previously created target, thus restarting
the block.
An implication of this system is that such a block can only terminate when it completes
without an interrupt occurring. Applications must therefore ensure not to accidentally
prevent this from happening. If possible, longer-running tasks should periodically save
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their progress to memory, so that progress is not lost when an interrupt occurs. Also
note that any system call from within a XOM page with Register Clearing has the same
effect as an interrupt, potentially causing an infinite loop if no precautions are taken.

4.4 Limitations

Currently, the modified Xen hypervisor only supports page locking on Intel platforms.
This is mainly due to differences in the respective SLAT implementations of VMX and
SVM, which necessitate platform-specific programming when modifying page table entries.
VM exit handlers are also platform-specific, which affects the implementation of Register
Clearing. Therefore, reliable page-locking for both Intel and AMD platforms would
essentially require two separate implementations.
In the interest of time, only the Intel-specific version was implemented for this thesis. The
reason for choosing Intel over AMD is that creating SLAT-based XOM on AMD requires
the SEV-SNP feature set extension, which is far less widely supported on consumer-level
CPUs than Intel’s EPT. Furthermore, Xen already supports a high-level interface for
managing EPT entries, whereas support for SEV-SNP is fully absent at the time of
writing. To what capacity page locking on AMD platforms differs from page locking on
Intel platforms therefore remains a question for further research.

4.5 Availability

All code written as part of this work is made publicly available in hopes that it may
be useful for future research. This includes the modified Xen hypervisor, modxom,
libxom, and most of the experiments. To ease the process of setting up a XOM-capable
environment, I also provide a disk image of a fully set up Xen hypervisor with a host
and XOM-capable guest operating system.
The following is a list of publicly accessible software repositories that were used during
the creation of this thesis.

• https://github.com/tristan-hornetz/libxom - Contains libxom and modxom.
This repository is geared towards public release and may see updates in the future.

• https://github.com/tristan-hornetz/xen - The modified Xen hypervisor.

• https://github.com/tristan-hornetz/libxom-experiments - An archive of
the code used for benchmarks and attack proof-of-concepts. This repository also

https://github.com/tristan-hornetz/libxom
https://github.com/tristan-hornetz/xen
https://github.com/tristan-hornetz/libxom-experiments


26 Chapter 4 Implementation

contains the exact versions of modxom and libxom that were used during these
experiments to ensure reproducibility.

• https://github.com/tristan-hornetz/openssl - A patched version of OpenSSL,
where code and data are more strictly separated. It is meant for usage with nginx.

https://github.com/tristan-hornetz/openssl
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Evaluation

As stated earlier, the primary goal of this thesis is to assess the characteristics of hardware-
enforced XOM on a more fundamental level, in order to identify novel applications for
it. Therefore, this chapter contains a survey of XOM’s performance implications and
an analysis of multiple attacks that might threaten its security guarantees. Since Key
Locking is perhaps the most important result of this effort, this chapter also contains
case studies of Key Locking implementations for AES-128-CTR and HMAC-SHA256,
covering their specific implementation challenges and performance as compared to a
non-confidential reference implementation.

5.1 Performance

Many potential applications of XOM hinge on the assumption that XOM-protected code
imposes little overhead on a program’s execution. If used as a defense against code-reuse
attacks, for example, the security benefits of a XOM-based protection scheme may not
warrant any overhead at all in the eyes of many users. This especially holds in highly
optimized environments, such as a web browser or a database. While existing protection
schemes involving XOM are known to slow the protected program down, it is unclear
to what capacity XOM itself contributes to this overhead, as these schemes also involve
drastic changes to a program’s code [3, 8].
Therefore, I investigated the performance of XOM on its own, first on a set of micro-
benchmarks, and then on the nginx webserver [43] to gauge the effects on a more complex
workload. The results show that MPK-enforced XOM is just as fast as regular memory,
whereas EPT-enforced XOM can impose a non-negligible runtime overhead, even without
modifications to the code.

27
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5.1.1 Microarchitectural Performance

In addition to finding out whether XOM can slow a program down at all, a goal of
this performance analysis is to identify the exact circumstances under which this can
occur. This is not possible by simply benchmarking a set of test programs such as
the SPEC CPU benchmarks [44], as these benchmarks typically consist of complex
workloads that may obscure the microarchitectural effects responsible for potential
overhead. Consequently, the first set of tests consists of simple micro-benchmarks,
which aim to identify performance differences between XOM and non-XOM memory for
primitive microarchitectural operations. Specifically, the goal of these tests is to study
the effect of XOM on instruction fetches, code address translations, and speculation
behavior. To achieve this, the following micro-benchmarks are employed:

• Access: Call a function that consists of a single ret instruction, thereby triggering
a single-byte memory access. In the cached variant, a ’dry-run’ of this benchmark
is performed before running the test itself, to ensure that the function’s code is
cached. In the uncached variant, the function’s code is flushed from the cache
hierarchy before it is called with the clflush instruction.

• NOP Sled: Call a 4 kB page filled with nop instructions. The goal of this test is
to find out whether there are performance differences in branchless code without
complex control-flow and memory dependencies, which does not trigger code address
translations. As the CPU does nothing but fetch the code from memory, this should
give insights into the performance of memory accesses into XOM.

• Primes: Compute the first 10, 000 prime numbers with a naive trial division
algorithm. The goal of this test is to find out whether there are performance
differences in scenarios where correct code branch speculation is harder, and
occasional mis-prediction is to be expected. However, this workload also greatly
benefits from correct speculation, as it contains loops that repeat often and exhibit
similar behavior for extended periods of time. The Primes benchmark is thus likely
to perform differently when speculation behavior is altered.

• Chain: This test consists of 212 4 kB code pages. Whenever a page is called, the
program simply jumps to the next page until the end of the chain is reached. The
number of pages is larger than the amount of entries in the last-level TLB, thus
necessitating address translations even when the test is performed repeatedly.

• Random Jumps: As with Chain, this benchmark consists of 212 code pages.
However, instead of jumping along the chain sequentially, the next page is chosen
at random with a linear-feedback shift register. This ensures that the next page
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Figure 5.1: Mean time required for executing the benchmarks with and without XOM
(less is better). The black lines in the center of the bars indicate the range between the

1st and 99th percentile of samples.

address is hard to predict, thus preventing the CPU from performing address
translations ahead-of-time.

Test results for the Intel Core i7 7700k and i5 13600kf processors are shown in Figure 5.1.
Note that MPK is not supported on the Core i7 7700k, so times for MPK-enforced XOM
are only listed for the Core i5 13600kf.
For the Access, NOP Sled, and Primes tests, there is no significant timing difference
between non-XOM code and code protected by either of the XOM variants. This strongly
indicates that the performance of instruction fetches is unaffected by XOM, regardless
of whether the code is cached or uncached. Speculation remains unaffected as well, as
indicated by the Primes benchmark.
However, there is a large difference in the execution times of the Chain and Random
Jumps tests between non-XOM and EPT-XOM. With the Random Jumps benchmark,
the mean runtime overhead is roughly 5.9 % for the Core i7 7700k, and 39.4 % for
the newer Core i5 13700kf. For the Chain benchmark, the Core i7 7700k does not
exhibit an overhead at all, whereas an overhead of roughly 37.1 % is observable on the
Core i5 13700kf. From this, we can confidently conclude that EPT-XOM code address
translations are slower on both processors. Note that all benchmarks use EPT, and that
the only difference between the non-XOM and EPT-XOM benchmarks is the setting of
the EPT permission bits. Therefore, this cannot be explained as a performance difference
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between EPT and non-EPT address translations. Notably, there is no overhead with
MPK-enforced XOM, which makes sense given that the page table entries of MPK-XOM
are not modified when a page is locked.
However, the cause for the large divergence between the two processors remains unknown
as of writing this thesis. It is possible that the Core i7 7700k exhibits a more aggressive
prefetching strategy, already performing the address translations for the next pages
while the previous page’s code is still executing. This would explain the lack of a
runtime overhead with the Chain benchmark, as the next pages are easily predictable.
Additionally, the sub-mechanism causing the overhead may not have been optimized as
much across processor generations as address translations overall. The Core i5 13700kf
can perform a normal address translation significantly faster, thus causing a larger relative
overhead if the absolute overhead time remains constant.
A consequence of the EPT-XOM’s overhead is that large programs with many cross-
page branches are more affected than smaller programs occupying only a few code
pages. Whereas simple programs, such as the trial division algorithm in the Primes
benchmark, may not exhibit any runtime overhead at all, complex applications may see a
significant slowdown due to EPT-XOM. Therefore, EPT-XOM is generally better suited
for protecting small code segments rather than entire applications, which may make it a
poor choice e.g., as a defense mechanism against code-reuse attacks.

5.1.2 Setup Performance

To estimate the impact of XOM on real-world applications, the costs of setting up and
releasing XOM pages must also be taken into account. For MPK-XOM, this cost does
not differ from allocating normal memory. On Linux for example, MPK-protected pages
are allocated and freed using the same mechanisms as unprotected pages. The cost of
locking them is negligible, as this only requires a single register access.
Unfortunately, however, allocating and freeing EPT-XOM pages with libxom is consider-
ably slower than allocating and freeing normal 4 kB pages. The average runtime required
for performing these tasks is shown in Figure 5.2. For comparison, this figure also includes
the average time required with the conventional mmap/munmap interface. At the time
these benchmarks were performed, the test system always had enough memory available
to allocate the pages, so potential costs incurred by swapping memory to disk are not
included.
Whereas the allocation time for normal pages is almost constant with respect to allocated
size, it grows in a roughly linear fashion for XOM pages. This is mostly due to the
mechanism that Linux uses to mark pages as non-swappable, which requires memory
ranges to be entered on a per-page basis. While this is hard to fix from within a kernel



Chapter 5 Evaluation 31

24 27 210

No. Pages

10−6

10−5

10−4

10−3

Se
co

nd
s

allocate

24 27 210

No. Pages

10−5

10−4

10−3

10−2

lock

24 27 210

No. Pages

10−6

10−5

10−4

10−3

10−2

free

XOM Non-XOM

Figure 5.2: Mean time required for allocating, locking, and freeing 4 kB pages (n = 210,
Intel Core i5 13600kf). The vertical lines indicate the range between the 1st and 99th

percentile of samples.

module, this mechanism could easily be optimized in the kernel itself, so allocating
non-swappable memory for use as XOM can in theory be done with little overhead.
Costs for locking a memory range also grow linearly, which is due to similar per-page
mechanisms in Xen and modxom. To make locking more efficient, Xen allows locking a
range of physically contiguous pages with a single hypercall. Therefore, modxom performs
contiguity checks on pages that are to be locked, incurring linear costs. Similarly, as an
EPT entry must be modified for every XOM page, Xen must perform a page table walk
for every page it locks.
Releasing XOM pages incurs linear costs in Xen for the same reason. Additionally, Xen
overwrites the entire memory range upon releasing it. While the Linux kernel does this
as well when freeing a page, releasing a XOM page is still orders of magnitude slower, due
to the combined costs of hypercalls and having to modify multiple sets of page tables.
However, the impact of this overhead on most real-world applications is still likely to
be little. Allocating and releasing code pages is typically only done upon starting and
stopping a process, so an impact on the program’s runtime performance is unlikely.
Furthermore, startup performance is unlikely to be noticeably different to most users, as
allocating code pages is still relatively fast, even if slowed down by multiple orders of mag-
nitude (for reference, allocating 16 MB of EPT-XOM takes roughly 700 µs, and locking it
takes about 9 ms on an Intel Core i5 13600kf). Also, note that the test implementation
used in this thesis leaves much room for optimization. Although performing an additional
hypercall from within the kernel is necessarily slower than a normal system call, all of
the above operations can likely be performed much faster if sufficiently optimized. This
section’s results should therefore be seen as an upper bound on setup performance, rather
than absolute values.
Nevertheless, there are scenarios in which EPT-XOM can severely degrade performance,



32 Chapter 5 Evaluation

such as environments with a JIT-compiler, where allocating and releasing large seg-
ments of code during runtime is not out of the ordinary. If possible, applications like
web-browsers should therefore rely on MPK-enforced XOM, which incurs negligible
overhead.

5.1.3 Application Performance

To get an understanding of how XOM impacts a more complex application, I performed
a set of benchmarks on the nginx webserver using the Phoronix Test Suite [43, 45].
Phoronix measures the amount of https requests that nginx can process over a fixed
period of time, saving the aggregated value as a sample every 90 seconds. This process
repeats at least three times and then continues until the standard deviation of samples is
below a threshold of 3.5 % of the arithmetic mean. The amount of recorded samples thus
varies between configurations, but the results are always guaranteed to be statistically
significant. Phoronix can perform this test with different numbers of clients querying
nginx in parallel, all officially supported settings of which were tested in this experiment.
For the test runs using XOM, nginx was started with libxom’s xom command line utility,
which ensures that all code is migrated into XOM before it can execute (including libraries
loaded at runtime with dlopen). The effectiveness of this method was verified by externally
monitoring nginx’s memory map while the tests were performed. Additionally, both
XOM and non-XOM tests employed a customized version of OpenSSL, as OpenSSL does
not strictly separate code and data in its assembly code and thus requires modifications
to execute correctly in XOM.
The results of this benchmark are shown in Figure 5.3. On average across all configurations,
EPT-XOM reduces the amount of requests nginx can process by 5.3 % on the Core i7
7700k, and by 3.1 % on the Core i5 13600kf. This confirms that EPT-XOM can incur non-
negligible performance overhead on real-world applications, even without diversification
or other modifications to a program’s code.
In contrast, MPK-enforced XOM leads to a reduction of only 0.6 % on the Core i5
13600kf, which is well within the error expected with Phoronix’s 3.5 % standard deviation
threshold. Although a small overhead cannot be ruled out, this reduction is likely a
result of measurement imprecision, given that MPK-XOM does not produce observable
overhead in any of the previous experiments. MPK should therefore be the preferred
XOM enforcement mechanism when protecting whole applications, unless the protection
scheme depends on EPT’s stronger security guarantees.
In this context, it should be noted that there is a second type of overhead that can
impact applications if Register Clearing is in use. For the Register Clearing mechanism
to be secure, the hypervisor must intercept all of the guest’s interrupts, faults, and
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Figure 5.3: Average performance of a 2-threaded nginx instance with and without XOM,
measured in requests processed per second (more is better).

other task switches, even those that the guest could normally handle without external
intervention. This also entails that the vAPIC included in VMX must be disabled, as it
delivers interrupts directly to the guest kernel [9]. The performance penalty resulting
from this affects the entire guest system, even if EPT-XOM or Register Clearing are not
used directly.
For the first test, register clearing was completely removed from Xen, whereas the second
test enables register clearing and disables the virtual APIC. XOM was not utilized in
any of the configurations.
On average, register clearing reduces the amount of requests nginx can handle by 1.8 %
on the Core i7 7700k, and by 2.2 % on the Core i5 13600kf. However, these values should
be seen as an upper bound for the expected performance overhead in the same way as
the results from Section 5.1.2. Firstly, the register clearing implementation used for
this experiment is not particularly optimized, and can likely still be improved upon
significantly. While an overhead of roughly 2 % is unacceptable in many scenarios, the
overhead with a well-optimized implementation may therefore be much lower. Secondly,
a web server attempting to process as many requests as possible constitutes somewhat of
a worst-case scenario for register clearing, as this involves a high amount of task switches,
which need to be handled by the hypervisor. More compute-heavy applications with
fewer task switches may therefore see a lower performance penalty.
Despite its system-wide costs, register clearing is thus not impractical. In comparison
to certain Spectre mitigations, which can slow down nginx by as much as 25 % [46],
these costs even seem downright negligible. Nevertheless, register clearing should only be
enabled if absolutely required to prevent unnecessary costs. Figure 5.4 shows the effect



34 Chapter 5 Evaluation

20 100 200 500 1000 4000
No. of Parallel Connections

9800

10000

10200

10400

10600

10800

R
eq

ue
st

s
pe

r
Se

co
nd

nginx 1.23.2 (Core i7 7700k)

20 100 200 500 1000 4000
No. of Parallel Connections

16500

17000

17500

18000

18500

19000

19500

20000

20500

R
eq

ue
st

s
pe

r
Se

co
nd

nginx 1.23.2 (Core i5 13600kf)

No Register Clearing Register Clearing

Figure 5.4: Average performance of a 2-threaded nginx instance with and without
Register Clearing enabled in Xen, measured in requests processed per second (more is

better). None of the configuration utilitze XOM.

this has on the performance of nginx.

5.2 Attacks on Execute-Only Memory

The following section aims to investigate potential attacks against XOM. This only
covers attacks applicable to hardware-enforced XOM in general, meaning that they are
oblivious to the setting in which it is used. In summary, XOM proves to be highly resilient
against transient execution attacks such as Spectre (see Section 5.2.3) and Meltdown
(see Section 5.2.4), even to the point that it can be considered a countermeasure against
them. On the other hand, attacks like Interrupt-driven Code Recovery can almost
completely dismantle the security guarantees of XOM and are difficult to mitigate (see
Section 5.2.1). Despite of this, none of the attacks discussed in this section can undermine
the confidentiality of Key Locking, reaffirming the technique’s effectiveness.
For all attacks, we assume that the protected code is already locked into XOM once the
attack begins and that there are no copies of the protected code anywhere in memory.
The attacker’s goal, unless otherwise specified, is to disclose as much information about
the XOM-protected code as possible. No information about the code is known to the
attacker before starting the attack, apart from its intended usage.
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5.2.1 Interrupt-driven Code Recovery

A special property of EPT-based XOM is that even the guest kernel is unable to read its
contents. Therefore, secrets stored in this type of XOM may be the target of attackers
with kernel privileges, which means that we have to take such attackers into account
when discussing this protection scheme.
Perhaps the most effective attack that a kernel-based attacker can perform is Interrupt-
driven Code Recovery [1]. First described by Schink and Obermaier for the ARM
Cortex-M architecture, this attack involves the following steps for recovering a single
instruction:

• Generate a set of so-called input states, each of which with different register and
memory values.

• For each input state, execute the instruction and interrupt the program right
afterward to record the resulting output state.

• Filter out implausible instruction types based on a set of simple rules.

• Enumerate all of the remaining instructions.

• Verify these instructions by executing them on the input states, discarding those
that do not produce the recorded output state.

• If only one of the enumerated instructions is left, the original instruction was
successfully recovered. Otherwise, the attacker is left with a set of functionally
equivalent instructions, one of which is guaranteed to be the original.

Note that with debugging interfaces such as ptrace on Linux [37], this attack can also
be mounted by a user mode process. However, as it is trivial to restrict access to these
interfaces, we consider this to be an attack requiring kernel privileges.
While this method of interrupt-driven code recovery is effective for Cortex-M, several
issues arise when conducting similar attacks on x86-based architectures. Firstly, x86 is a
CISC instruction set, and as such, the amount of instructions it supports is considerably
larger. This makes it challenging to filter out instruction types on just a few simple rules.
Secondly, the encoding of x86 instructions allows for greater variation in terms of an
instruction’s operands. For example, memory accesses require a dedicated instruction
with the Thumb instruction set used on Cortex-M [47]. On x86_64, most arithmetic
and branch instructions can use a memory operand, which may consist of a base register,
index register, scale factor, and a 32-bit displacement value [31]. Due to this massively
increased set of instruction variants, it is impractical, if not impossible to enumerate a
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Figure 5.5: A schematic overview of interrupt-driven code recovery on x86_64. The
assembly snippets use AT&T syntax.

set of all instructions that come into question for a specific output state. This problem
is unsolved as of yet, and to the best of my knowledge, interrupt-driven code recovery
has not yet been attempted on x86_64.
As part of this thesis, I therefore propose a modified version of interrupt-driven code
recovery for complex instruction sets such as x86_64, with the goal of demonstrating
that this attack is a realistic threat. Instead of enumerating all plausible instructions
based on simple rules, the instruction list is generated with an SMT solver. A high-level
overview of this technique is shown in Figure 5.5. A tracer process, which is either a
kernel procedure or a user-mode process using ptrace, generates a set of input states, lets
the so-called tracee process execute a XOM instruction on them, and then retrieves the
output state. Both the input and output state include the current register values and
the values of certain memory locations, such as the current stack frame and all locations
to which a pointer is stored in a register.
An SMT Solver then compares these states to a set of so-called instruction models. Each
instruction model consists of a set of constraints on the input and output states in relation
to an instruction’s operands, representing the logic of a certain family of instructions.
For instance, the model for ret contains a constraint dictating that the value of %rsp in
the output state must have been increased by 8 compared to the input state, and another
constraint dictating that the current output state’s %rip must be the value in the input
state’s (%rsp). The model for the family of mov instructions dictates that if a register
has changed in the output state, the destination operand must be said register and the
destination’s new value must either be a value from another register, a memory location,
or the instruction’s immediate value. Only if the SMT solver finds an assignment to
the instruction’s operands such that the model is satisfied, the resulting instruction is
considered for verification.
The effectiveness of this altered approach was tested on a small proof-of-concept imple-
mentation, based on the z3 SMT solver [48]. Since modeling all instructions of x86_64
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1 get_fibonacci:
2 movq $0, (%rsi)
3 _1:
4 cmp $1, %rdi
5 jg 0xc <_2>
6 // Base case: n <= 1
7 lea (%rsi,%rdi,8), %rcx
8 mov %rdi, %rax
9 dec %rdi

10 jmp 0x11 <_3>
11 _2:
12 // Recursive step
13 dec %rdi
14 call -0x1a <_1>
15 xchg %rax, %rdi
16 add %rdi, %rax
17 add $8, %rcx
18 _3:
19 // Save result
20 mov %rax, (%rcx)
21 ret

(a) Original Code

get_fibonacci:
movq $0, (%rsi)

_1:
cmp $1, %rdi
jg 0xc

lea (%rsi,%rdi,8), %rcx
mov %rdi, %rax
<dec %rdi | sub $1, %rdi>
jmp 0x11

_2:

<dec %rdi | sub $1, %rdi>
call -0x1a
xchg <%rdi,%rax|%rax,%rdi>
add %rdi, %rax
add $8, %rcx

_3:

mov %rax, (%rcx)
ret

(b) Output of z3

get_fibonacci:
movq $0, (%rsi)

_1:
cmp $1, %rdi
jg 0xc

lea (%rsi,%rdi,8), %rcx
mov %rdi, %rax
dec %rdi
jmp 0x11

_2:

dec %rdi
call -0x1a
xchg <%rdi,%rax|%rax,%rdi>
add %rdi, %rax
add $8, %rcx

_3:

mov %rax, (%rcx)
ret

(c) After verification

Figure 5.6: A function filling the buffer in %rsi with the first n Fibonacci numbers,
where n is given in %rdi (AT&T syntax). Figures (b) and (c) show the formatted
output of z3, and the recovered code after verifying each instruction on the input states.

as constraints would require an effort incompatible with the time limits of this thesis, the
proof-of-concept only considers a small selection of the most commonly used instructions.
The input state generator is also relatively primitive: For each input state, one register or
memory value of the state recorded during normal execution is replaced with a constant
integer, a valid data address, or a valid code address.

Figure 5.6 shows the output of this implementation for a short program computing
the Fibonacci number sequence. Despite the input generator’s simple design, z3 can
uniquely determine all but three instructions purely based on the recorded output states.
Verification on hardware was therefore not necessary with these instructions. Note
however that the proof-of-concept implementation’s search space is reduced to just a
few instruction families, and that other instructions may come into question as well if
the whole instruction set were to be considered. For the remaining instructions that
could not be uniquely determined, the alternatives are functionally equivalent. However,
the alternatives generated for the instructions in lines 9 and 13 have different lengths
when assembled, which leaves only one valid instruction after verification. Only the xchg

instruction in line 15 cannot be uniquely recovered due to its commutative properties.
The reconstructed code perfectly reproduces the original code’s behavior nonetheless,
regardless of which alternative is chosen.
Nevertheless, this type of attack is not without its limitations. As demonstrated, certain
instructions with commutative properties such as xchg cannot be recovered, even in
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full knowledge of all possible input and output states. The same holds for instructions
without an observable effect, such as nop, mov %rax, %rax, or add $0, %rax. While
this may not be of concern to an attacker aiming to build a functional reconstruction of
the XOM-protected code, an attacker aiming to disclose the code as a prerequisite for
code-reuse attacks may not be able to recover certain gadgets due to this.
Moreover, this attack is resource-intensive in terms of computing power. To produce the
output in Figure 5.6, z3 required a runtime of 22 min 2 s on an Intel Core i5-13600kf
processor with 20 parallel threads, evaluating roughly 150 input and output states per
instruction. Utilizing a set of instruction models covering all of x86_64 is therefore likely
to require considerably longer than that.
However, it is also reasonable to assume that by more carefully selecting the input and
output states passed to the SMT solver, thus requiring fewer of them, this runtime
can be drastically reduced. Furthermore, the SMT solver is not necessarily required to
produce a unique result wherever possible. This task can be delegated to the verification
step if the SMT solver can reduce the set of plausible instructions to a manageable size,
which can be the case after processing just one input and output state. Whether it is
feasible to recover large sections of arbitrary code given this optimization potential is to
be answered by further research.
Unfortunately, defending against interrupt-driven code recovery is difficult due to the
guest kernel’s high privilege level. Defense measures must be implemented in the hy-
pervisor, as any other component of the virtual machine is under the guest kernel’s
control. A conceivable defense would be to prevent the guest kernel from interrupting
the XOM-protected code after just one instruction, rendering it unable to record the
output states. If such an interrupt occurs, the hypervisor can transfer control back to
the XOM-protected code instead of the kernel’s handler routine. After executing one
or more additional instructions, the XOM-protected code is interrupted again, at which
point the kernel can be invoked securely. However, this defense may endanger the virtual
machine’s stability, as certain interrupt types require immediate action from the guest
kernel. For example, a page fault caused by a memory access cannot be deferred, and
continuing to execute code without properly handling it is likely to result in undefined
behavior. It also restricts the virtual machine’s functionality, as debugging is no longer
possible this way.
Another possible defense is Register Clearing. This prevents the kernel from recording a
meaningful output state but requires specialized functionality in the XOM-protected code
for recovering from interrupts. Consequently, it cannot be applied to most programs,
limiting its applicability as a defense. Also, as discussed in Section 5.1.3, Register
Clearing imposes a non-negligible performance penalty on the guest, as the hypervisor
must be invoked for every interrupt and exception type, even those that the guest kernel
could usually handle without the hypervisor’s assistance.
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Due to the considerable limitations of the available defense measures, the possibility of
interrupt-driven code recovery must always be considered when relying on EPT-XOM for
security. It can thus be considered as a conceptual weakness rather than an attack vector,
making it perhaps the most severe threat to EPT-XOM’s confidentiality guarantees.
However, it also requires privileges that are typically not granted to user-mode processes
and is therefore only a concern in scenarios where the attacker has control over the kernel.
Furthermore, Key Locking is not affected by it, as Key Locking implementations always
utilize Register Clearing.

5.2.2 DMA Attacks

Direct Memory Access (DMA) attacks leverage hardware with direct access to a system’s
main memory, thereby bypassing all restrictions set in the page tables [49]. In a typical
DMA attack, the attacker uses a malicious peripheral device, such as a rouge Thunderbolt
accessory, to obtain secrets from protected memory regions, or to overwrite code for
arbitrary code execution on any privilege level. Unfortunately, both MPK and EPT-
enforced XOM can be subverted this way. However, a traditional DMA attack requires
physical access to hardware, placing it out of scope for many of the protection schemes
discussed in this thesis.
Alas, there is a second type of DMA attack that could pose a realistic threat in the
context of EPT-enforced XOM if left unaddressed. If a virtual machine has access to
a peripheral device, e.g., with PCI passthrough, this device could work as a confused
deputy, giving the virtual machine access to memory without properly enforcing page
table permissions. While this type of attack typically requires kernel privileges, ways
exist to mount such DMA attacks even from user mode.
For example, consider the CL_MEM_USE_HOST_PTR flag for OpenCL [50], which affects the
behavior of memory buffers for GPU-powered computing. If specified, this flag instructs
the GPU to load data directly from a user-supplied pointer, instead of copying it to a
driver-controlled location first. As the GPU does not enforce page table permissions
when loading memory, an attacker could make a copy of the XOM buffer this way, and
then store it to a readable location. Whether this attack works then depends on whether
the underlying OpenCL driver correctly verifies the EPT permissions.
Kernel-based attackers, with the capability to communicate with peripherals more freely,
can in theory mount similar attacks for every device that can load data through DMA
upon request. As long as this data can be read back by the kernel somehow, it is
accessible to the attacker.
Fortunately, DMA attacks are relatively easy to prevent on modern hardware. Recognizing
the issue of unrestricted memory access for peripherals, chipset and CPU manufacturers
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nowadays include so-called IOMMUs in their processors [51, 52]. These hardware
facilities apply the concept of virtual memory to DMA requests, thus adding a layer of
indirection between DRAM and the peripheral device. Address translation and permission
enforcement in the IOMMU are controlled through page tables, which are analogous in
concept to the page tables of the CPU’s MMU.
It is therefore possible for the hypervisor to ensure that EPT-XOM pages are adequately
protected from rogue DMA accesses. DMA reads from EPT-XOM pages can be prevented
by modifying the access permission bits, or by unmapping them from the DMA address
space altogether. Note however, that while an IOMMU is included in virtually all recent
x86_64 platforms, it is often disabled by default for performance reasons. The hypervisor
must therefore also ensure that an IOMMU is available in the first place before allocating
EPT-XOM pages. With an adequate IOMMU configuration in place though, DMA
attacks pose no threat to the confidentiality guarantees of EPT-XOM.

5.2.3 Spectre-like attacks

Spectre is an attack scheme from the family of transient execution attacks, which exploit
quirks in a CPU’s out-of-order execution system to leak information that would otherwise
be inaccessible to an attacker. In particular, Spectre-like attacks aim to mistrain the
CPU’s branch prediction mechanisms, thus causing it to speculatively execute code or
make memory accesses of the attacker’s choice. Attackers can then utilize so-called Spectre
gadgets in a victim program’s code to encode secrets in the cache state, and then leak them
through a cache-based side channel attack such as Prime+Probe or Flush+Reload [53].
Many variants of this scheme were proposed in literature, utilizing different mistraining
strategies for various branch types [53–56]. Note that this thesis considers any attack
following this rough scheme to be Spectre-like, following the classification scheme devised
by Canella et al. [55].
A characteristic of Spectre attacks is that they typically cannot bypass memory protection
measures such as XOM directly. Instead, they depend on the mistrained branch predictor
to cause speculative accesses in a different security domain, where the secret is not
protected. A Spectre attack leaking XOM directly is therefore only possible in scenarios
where protected pages are mapped as readable in another security domain.
For the EPT-XOM implementation used in this thesis, this can only occur during the
unlock operation in the hypervisor. During this operation, Xen creates a read/write
mapping to overwrite XOM pages before making them available to the guest again.
However, the code responsible for clearing the pages can be written in a way that is
resistant to Spectre, making it impossible for attackers to encode the data in the cache.
The only way to mount a Spectre attack in this scenario is by targeting a separate



Chapter 5 Evaluation 41

hypervisor procedure running in parallel. This is difficult due to the short time window
during which leakage is possible, and the inability to repeat the attack once the data is
overwritten. In the face of spectre mitigations [34, 57, 58], and further defenses such as
randomization of the addresses at which the XOM pages are mapped, the attack becomes
entirely unpractical.
Similar conditions apply to MPK-enforced XOM, as a readable mapping for Spectre
attacks to access typically does not exist. Furthermore, speculatively changing the
pkru register in a Spectre attack to retrieve secret information is impossible, as wrpkru

implicitly linearizes memory accesses, similar to memory fence instructions [9]. A memory
access thus cannot occur before the wrpkru instruction retires, not even speculatively.
Due to this property, MPK was even proposed as a countermeasure against Spectre [59–
61], including by Intel themselves, although not in the context of XOM. It is hence
impractical at best to leak XOM-protected code directly through a Spectre-like attack, if
not impossible.
However, the XOM-protected code can itself be speculatively executed, making it as
susceptible to misuse in Spectre attacks as any other code. Consequently, attackers can
still exploit instances of careless programming to obtain secrets stored in XOM.
An example of this is shown in Figure 5.7, which shows an example program vulnerable
to the ret2spec variant of Spectre [54]. The XOM-protected encryption procedure
perform_encryption stores its key as an immediate value, thus preventing it from
unauthorized accesses. With ret2spec, an attacker running on the same core can poison
the Return Stack Buffer (RSB), which is a specialized cache storing return addresses
for optimizing speculative execution. If the encryption procedure is interrupted, only
resuming after the attacker process was executed, the last entry in this cache may still
contain the return address of the attacker. This causes the CPU to speculatively return
to an attacker-controlled address. As the encryption key is still in a register at this point,
the attacker can trigger a key-dependent memory access, thereby encoding parts of the
key in the cache.
Fortunately, it is possible to mitigate this problem through various means. In this toy
program, the easiest fix would be to clear the key from the register state before returning.
A more general solution would involve inserting linearizing instructions or retpolines [34]
before every indirect branch. Employing branchless programming, where possible, can
result in similar protection while circumventing the performance penalty of linearizing
instructions. Mounting a Spectre-like attack against a program utilizing these defensive
measures is generally not feasible, thus making Spectre a threat only where such measures
are not taken.
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perform_encryption :
mov $0xdeadbeefdeadbeef , %rsi
// ...

// Key is still in %rsi when returning
ret

victim :
// ...
call perform_encryption
xor %rsi , %rsi
// ...

shr %al , %rsi
// ...
mov %sil , %dil
// ...
mov (%rcx , %rdx , 8), %rax

Figure 5.7: An example program vulnerable to ret2spec. Solid arrows indicate the
architectural execution path, and the dotted arrow shows a speculative path an attacker

might be able to induce.

5.2.4 Meltdown-like attacks

In contrast to Spectre, Meltdown-like attacks aim to break hardware-enforced memory
protection schemes directly, without relying on code in a different security domain.
This family of attacks exploits that on affected processors, page-table settings are lazily
evaluated during speculative execution. If a protected value is stored in the cache or
another CPU-internal buffer, an attempted access can cause the CPU to speculatively
load and use this value, even if the page table permissions forbid this. As with Spectre,
attackers can then leak the value through Prime+Probe or Flush+Reload.
The original Meltdown attack as described by Lipp et al. utilizes this to overcome the
user/supervisor bit setting, thus allowing an attacker to read arbitrary kernel memory if
mapped in a processes address space [62]. Similar attacks make it possible to leak data
from a wide range of CPU-internal buffers on affected processors [63–67]. Note that this
thesis follows the classification scheme of Canella et al., and thus also considers L1TF
attacks and MDS attacks like RIDL to be Meltdown-like [55].
However, leaking data from XOM using a Meltdown-style attack is, for lack of better
evidence, improbable to work with any modern processor. While it is possible to bypass
MPK protection with Meltdown, this requires the protected value to be cached in either
the L1d cache or the store buffer [55]. Such a scenario is unlikely to occur with XOM,
as instruction fetches typically do not affect these caches. Other CPU-internal buffers
shown to be vulnerable against Meltdown-like attacks, such as the LFB or the load buffer,
remain unaffected as well. Instruction fetches only update buffers such as the L1i cache
or the higher level L2 and L3 caches, which to the best of my knowledge, are invulnerable
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to any known Meltdown-like attack.
I confirmed this assumption with a series of experiments, in which I was unable to apply
Meltdown to both EPT and MPK XOM in any capacity, even on affected processors such
as the Intel Core i7-7700k. Attempts to leak XOM while cached in the L1i cache, and
while executed by another hyperthread on the same physical core, proved unsuccessful.
Although this is not definitive proof that XOM is fully unaffected by Meltdown, this
is not an unreasonable assumption to make given the lack of contrasting evidence in
literature. As such, it may be worthwhile to even consider XOM as a countermeasure
against Meltdown. This idea is further explored in Section 6.1.2. Finally, note that
modifications made to Meltdown-susceptible buffers by XOM-protected code are still
observable to an attacker. They could thereby learn secrets written to memory from
within XOM. Note that this is not a concern for Key Locking implementations, as writing
secrets to non-XOM memory violates the security model of Key Locking even in the
absence of Meltdown-like attacks.

5.2.5 Port Contention

While well-programmed code in XOM cannot be easily leaked through transient execution
attacks, it is not exempt from other side channels. However, there are relatively few side
channel attacks with the ability to disclose the code itself. Many side channels could
leak secrets encoded in XOM, with attackers potentially even observing control-flow
and memory-access patterns through cache-based side channels, but the instructions
themselves usually remain hidden.
One of the few exceptions to this are execution unit contention and port contention side
channels, which arise from how the CPU processes instructions internally [68]. As part
of the decoder pipeline, instructions are first decomposed into semantically simpler µOps,
which are distributed to the execution units through so-called execution ports by the
CPU’s scheduler. Each execution port is specialized for specific instruction types: On
Intel’s Skylake architecture for example, four ports per core can handle simple integer
arithmetics, but only one can process stores to memory. Although some details vary
between manufacturers, this general scheme sees use in virtually all x86_64 CPUs and is
well understood due to extensive reverse-engineering efforts [69].
On CPUs supporting Simultaneous Multithreading (SMT) (also called Hyperthreading on
Intel platforms), the execution units in a physical core are shared between two concur-
rently executing threads. While this leads to more efficient usage of the available hardware
resources, and thus to considerable performance benefits, it also has some unintended
side effects. If both threads concurrently execute instructions that use the same execution
port, one thread has to wait until the other thread’s instruction is processed, and the
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Figure 5.8: Port usage when encrypting 4 kB of data with several cryptographic
algorithms on an Intel Core i7-7700k (Kaby Lake) processor. The plots show the mean
time needed for executing the port contention primitive at a given time after starting

the encryption procedure (n = 2048).

port becomes available again. This causes minute, but measurable timing differences,
which an attacker can observe to gain information about the execution units that the
other thread utilizes. With the PortSmash exploit, Aldaya et al. demonstrated that this
can be used for recovering encryption keys from another process [68].
To my knowledge, port contention is the only microarchitectural side channel that can
reveal information about the code in a processor’s execution engine. It is also exception-
ally hard to mitigate, as nearly any instruction causes an observable side-effect. However,
recovering a victim program’s code utilizing this technique is typically infeasible. Firstly,
many instructions share the same execution unit utilization profile, and thus cannot be
told apart. Secondly, there is no way to recover an instruction’s operands. It might be
possible, for instance, to determine whether an instruction utilizes a register or memory
operand, but the operand itself is unobtainable. Finally, there is little indication to the
attacker on where an instruction is located in the victim’s code. While an instruction’s
execution is observable, recovering the location in which this occurs without knowledge
of the victim’s code is not possible.
Nevertheless, special cases exist in which port-contention side channels can reveal infor-
mation about the inner workings of XOM-protected code. For example, in cases where
one of several algorithms might have been used to solve a specific problem, the developer’s
choice can sometimes be identified through its port usage profile. As an illustration of this,
see Figure 5.8. The contention profiles shown in this figure were created by encrypting
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4 kB of data while continuously probing the port usage with another hyperthread. This
test was performed on implementations of AES [70], ChaCha20 [71], Camellia [72], and
Aria [73] from both the Linux Kernel [37] and OpenSSL [74], all with 128-bit keys. All
ciphers were used in counter mode, except for ChaCha20, which is a stream cipher.
Of the 8 execution ports on the Intel Core i7-7700k (Kaby Lake) processor utilized in
this experiment, only ports 0, 1, 5, and 6 can be probed reliably, as the remaining ports
execute memory operations. The probing primitives consist of instructions that only
target a specific port, such as aesenc for port 0, crc32 for port 1, and vpermd for port
5. Port 6, which typically handles branches, cannot be probed independently, as every
instruction executed through Port 6 also utilizes Port 0. Contention on Port 0 therefore
also affects the p06 curve in Figure 5.8. All probing primitives are designed to take
roughly 325 processor cycles if there is no contention. Note that the curves for individual
ports are not necessarily synchronized with each other, as probing different ports can
slow down the target program in different ways.
From inspecting the profiles in Figure 5.8, it is obvious that the port usage for the Linux
and OpenSSL versions of the same cipher are very similar. This makes sense, as both
versions implement the same functionality and use the same instruction set extensions.
Also, all ciphers except the versions of Aria used in this experiment are implemented in
assembly, which prevents compilers from using wildly different instructions due to minor
differences in the source code.
Furthermore, the profiles of different ciphers are distinct from each other. This is most ob-
vious with AES and ChaCha20, which most predominantly use ports 0 and 5 respectively.
With AES, which is implemented utilizing the AES-NI extensions [9] in both Linux and
OpenSSL, this is due to extensive use of the aesenc instruction, which is among the
few instructions that exclusively utilize port 0 on the Kaby Lake architecture [69]. Both
ChaCha20 implementations heavily rely on vector shuffle instructions, which primarily
target port 5. The difference between Camellia and Aria is less obvious, as they only
significantly differ in the way port 1 is used. Contending this port has a much stronger
effect on Camellia, making the encryption take almost twice as long. Aria is far less
affected by this. In conclusion, this means that the four algorithms in this experiment
can be confidently told apart from each other, even if implemented in slightly different
ways.
However, note that this is not conclusive evidence that distinguishing between algorithms
based on port usage alone is always possible. Firstly, this specific demonstration only
targets Kaby Lake processors, and similar attacks may produce different results on other
processor architectures. Secondly, the identifying features of certain algorithms, such
as the high usage of port 5 with ChaCha20 in the above example, may also occur with
implementations of other algorithms. In such cases, it may still be possible to use a
well-trained classifier model to spot more subtle differences, but whether this is practical
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remains a question for further research.
Nevertheless, it is not unreasonable to assume that port contention side channels can,
in certain cases, aid an attacker in reverse-engineering a protected piece of code. For
example, usage of AES-NI produces a highly distinctive port usage profile on Kaby Lake,
meaning that an attacker can likely detect whether this instruction set extension is being
used. In the face of possible attacks against AES-NI, such as the LazyFP exploit [66],
this may inform the attacker about possible attack vectors against the protected program.
When designing leakage-resistant schemes around page-locked XOM, potential leakage
through port-contention side channels must therefore still be considered.

5.3 Key Locking Case Studies

Whereas Key Locking was already discussed from a theoretical standpoint in Chapter 3,
this section aims to demonstrate it is not only theoretically feasible, but also practical.
To this end, I present case studies of two concrete Key Locking implementations, one for
AES-128-CTR and one for HMAC-SHA256. This involves a discussion of Key Locking’s
unique implementation challenges and a performance study.
The results show that Key Locking for AES does not reduce performance, with the
performance metrics of the Key Locking implementation being comparable to the per-
formance of the well-established libgcrypt library [75]. Although the performance of
HMAC-SHA256 suffers considerably from the restrictive control-flow protection rules
discussed in Section 3.3, the throughput of the HMAC implementation is still large
enough to make it practical in many scenarios.

5.3.1 AES-128-CTR

The first Key Locking demonstration implements AES in counter mode (CTR) with 128-
bit keys, which is relatively easy to do on modern x86_64 processors due to the AES-NI
feature set extensions[30, 70]. With the aesenc instruction, processors can perform a
round of AES completely in hardware, making it possible to encrypt a 128-bit message
block in just ten instructions. Round key derivation is made easy by the aeskeygenassist
instruction. Because of this, AES on x86_64 requires no complex control flow structures,
which makes it easy to implement using only direct branches. Furthermore, both of these
instructions can work on AVX register operands, making it easy to derive round keys
and perform encryptions without writing key material to memory.
The only real implementation challenge is therefore to handle Register Clearing events
gracefully. However, this too is not difficult to do with the CTR mode, as the program
can simply check the signal register after encrypting a message block. When the registers
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are cleared, it only needs to re-derive the round keys and restore the counter block using
the current message offset, which is not confidential and can thus be stored in a register
that is unaffected by Vector Register Clearing.
For these reasons, the confidential AES-128-CTR implementation is only 463 bytes long
(not including the encryption key), consuming only roughly a 9th of the 4 k code size
maximum. Loading a 128-bit encryption key requires 39 bytes of additional code. As
the algorithm’s code must be stored in the same XOM page as the key, this means that
a 4 kB code page can store up to 93 individual AES keys. Also, the small code size
makes AES practical to integrate into other algorithms for backing up data to memory,
as discussed in Section 3.2.

5.3.2 HMAC-SHA256

The second Key Locking case study implements the HMAC message authentication
scheme using the SHA-256 hash function [76, 77]. Although widely supported hardware
extensions exist for SHA256 as well, this implementation is far more challenging than
implementing AES, as the SHA extensions only cover certain primitive operations [78].
Therefore, the bulk of SHA-256 has to be implemented using more conventional techniques,
which involves control flow structures that are far more challenging to create with only
direct branches. This implementation should thus provide a more realistic insight into
the performance of Key Locking for more involved algorithms.
A special implementation challenge of SHA-256 is that it uses 64 so-called round constants,
which are typically read from memory. However, as this may allow an attacker to modify
them, potentially undermining SHA-256’s security guarantees, they must be stored in
code as immediate values, analogously to key. Therefore, each of these constants requires
its own small segment of code, which places them in the correct registers. Although
these code segments are not large individually, they alone consume about 540 bytes of
the 4 kB available and are thus larger than the entire AES implementation.
Another challenge with SHA-256 is that the hash state, which is continuously updated
with each message block, is lost after Register Clearing, and cannot be easily recovered.
The HMAC implementation must therefore employ encryption to securely store the hash
state to memory, as discussed in Section 3.2. In practice, it utilizes AES-NI to save
the hash function’s progress after every 256 hash blocks, which translates to 16 kB of
message data. When interrupted, the hash function can then restore its internal state
from the latest checkpoint instead of starting from scratch. This makes it possible to
authenticate messages of arbitrary size, even with heavy contention for CPU time from
other processes. The encryption key for this is generated at random, and inserted into
the program at the same time as the HMAC key. As explained previously, the IV is
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of samples.

generated with the CPU’s hardware random number generator, and saved to regular
memory along with the encrypted hash state.
Note that for this specific application, integrity checks are not necessarily required and
were thus not implemented. We consider the input to be attacker-controlled, and attackers
could thus influence the integrity of the output even if the backup were authenticated
with e.g., the GCM block mode.
As a result of these implementation challenges, the HMAC-SHA256 implementation is
much larger than the AES implementation, taking up roughly 2.8 kB of XOM. With a
256-bit HMAC key requiring 78 bytes to be loaded, this means that a single 4 kB XOM
page can only accommodate up to 16 keys, as compared to the 93 that can fit in a page
with AES.

5.3.3 Performance

To assess the practicability of these implementations, I measured their throughput un-
der varying conditions and compared them to the well-optimized implementations in
libgcrypt [75]. All implementations were tested once with and without register clearing
being active in the hypervisor, and once with register clearing and an increased rate
of interrupts. Note that only the Key Locking implementations are directly affected
by register clearing, as libgcrypt does not use XOM. For the last test, the interrupt
frequency is increased by running two separate threads in parallel to the benchmark,
one with high CPU usage and one that spins on the sync system call. As the test VM
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only has virtual cores, this fully utilizes the available CPU resources, while the frequent
system calls necessitate a high number of context switches.
The results of this experiment are shown in Figure 5.9. With AES, there is close to no
difference at all between libgcrypt and the Key Locking implementation. Even with
register clearing and contention for CPU time, the Key Locking implementation is only
0.33 % slower on average.
This makes sense, given that the instruction sequence for encrypting data with AES-
NI does not allow for much variation, and is thus nearly identical between the two
implementations. Since the program does not cross code page boundaries, overhead
due to EPT-XOM address translation does not impact the performance. As mentioned
previously, recovery in the case of register clearing is very easy, as encrypted blocks are
written to memory immediately, and counter mode allows for restarting the encryption
at any offset with little performance loss. The most important result here is that these
recovery procedures do not significantly impact the overall performance, even under
heavy contention.
Unfortunately, the results for HMAC are less impressive, with the Key Locking implemen-
tation’s throughput being more than an order of magnitude lower than libgcrypt’s. This
is not unexpected, as the SHA256 code saw drastic alterations to follow the control-flow
protection rules from Section 3.3. For example, one of the largest changes was to encode
the round constants into code, which significantly increases the amount of code executed
per round and makes less efficient use of the CPU’s caching structures. Another change
was the introduction of the state-backup system, which adds additional overhead.
Also, the effect of register clearing on the HMAC implementation is much greater than
with AES, as the recovery procedures are significantly more costly. Even without added
contention for CPU time, the HMAC implementation’s throughput is 4.6 % lower on
average when register clearing is enabled. For comparison, AES is even 0.2 % faster
when register clearing is enabled, indicating that within measuring precision, there is no
performance difference at all. Additionally, whereas the added CPU contention slows
down libgcrypt’s implementation by only 3.2 %, the throughput of the Key Locking
implementation is reduced by 5.3 %. This makes sense, as up to 16 kB of progress can be
lost upon an interrupt.
Nevertheless, HMAC with Key Locking is not entirely unpractical. While the signif-
icant overhead may be unacceptable in performance-critical applications, the HMAC
implementation is still capable of processing roughly 121 MB per second, even with
frequent interrupts. In scenarios where hiding the key is more important than absolute
performance, HMAC with Key Locking is therefore still a viable option. It should also
be noted that the HMAC implementation still leaves much room for optimization, as it
was designed with security in mind rather than performance.



50 Chapter 5 Evaluation

In summary, the most important results of this experiment are as follows:

• Key Locking does not impact the performance of AES-NI by a significant margin,
even with frequent interrupts.

• The performance of more involved code can be drastically reduced, as demonstrated
with HMAC. Nevertheless, this does not render Key Locking implementations
entirely unpractical.

• Although programs with Key Locking can be more affected by a high interrupt
frequency than other programs, this effect is not so drastic as to make them
unusable.
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Discussion

6.1 Potential Applications

This section lists and discusses potential applications for XOM, and XOM-based Key
Locking in the context of x86_64. The focus here lies more on techniques that are
entirely novel or have yet to be applied to x86-based platforms. Therefore, XOM-based
defenses against code-reuse attacks are not listed here (see Section 7.2 instead).
In summary, XOM is immensely useful as a mitigation against memory disclosure attacks.
This can be applied to defense measures against Spectre and Meltdown attacks, but
also strengthen the security of conventional cryptographic software and Digital Rights
Management schemes. In certain scenarios, the security guarantees of EPT can also
provide tamper resistance, and help defend against reverse-engineering attempts.

6.1.1 Leakage Resistance for Encryption Keys

EPT-XOM-based Key Locking provides strong leakage resistance for encryption keys.
Keys can only be leaked during the short time window in which they are initialized. If an
exploit requires a large runtime, as is the case with many transient execution attacks, or
in cases where an attacker only gains control after a key is in place, leakage is impossible.
The attack surface can be even further reduced by initializing encryption keys in the
hypervisor, eliminating any way to leak them from within the guest. As Key Locking
for AES incurs little to no overhead, this may be used as a general hardening method
against key leakage. Nearly any software that uses AES, which includes most modern
applications with networking capabilities, may benefit from this.
Another advantage of this is that the permission to use the encryption key can be revoked
at any time, which is obviously no longer possible once the key has leaked. This property
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might prove useful in a variety of applications. For example, consider an encrypted hard
drive, which contains sensitive data that an attacker might want to steal. In the case
that monitoring software detects an ongoing attack, it can simply unmap the XOM page
containing the encryption key. This might still allow an attacker to partially leak the
hard drive’s contents while the XOM pages are present, but once the encryption keys are
gone, the attacker has no way to access the remaining files on the hard drive, even if
they fully compromised the guest.
Another advantage of EPT-enforced Key Locking is that it provides strong protection
against side channel and transient execution attacks. While these properties are not
strictly limited to encryption keys (see Section 6.1.2), encryption keys are a valuable
attack target and thus greatly benefit from this leakage resistance.

6.1.2 XOM as a Defense against Microarchitectural Attacks

Hardening large software projects against transient execution attacks such as Spectre is
difficult. Existing countermeasures like Intel’s Indirect Branch Restricted Speculation
(IBRS) can severely degrade performance, effectively crippling certain workloads [46].
More lightweight mitigations like Retpoline, on the other hand, were shown to be inade-
quate against certain Spectre variants [56], while still inducing considerable overhead [79].
Many Meltdown-style attacks, such as those from the class of Mircoarchitectural Data
Sampling attacks, cannot be easily mitigated at all without severely restricting an affected
processor’s functionality.
However, as discussed in Section 5.2, XOM is surprisingly resilient against transient exe-
cution attacks. Meltdown-style attacks require data to be stored in specific CPU-internal
buffers, none of which are directly affected by instruction fetches. Spectre-style attacks
require secrets to be readable in a different security domain, which is not the case with
XOM. Schemes utilizing these properties may therefore provide a strong defense against
transient execution attacks at little to no cost. Note that the stronger security guarantees
of EPT-based XOM are not necessarily required here, as MPK-enforced XOM cannot be
speculatively read either.
The easiest method to leverage XOM for storing secrets is to encode them into interme-
diate values for mov instructions. For example, a secret encryption key can enter the
register state this way without causing any microarchitectural side-effects that might
reveal its value to an outside observer. Applications for this were already discussed in
Section 6.1.1. However, this property is not restricted to encryption keys and can be
applied to many other scenarios. With certain secrets, it may not even be necessary
to load them into the register state at all, which further reduces the attack surface for
Spectre attacks.
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1 is_hash_correct:
2 mov $1, %rax
3 xor %r8, %r8
4

5 cmp $0x12345678, %edi
6 cmovne %r8, %rax
7 shr $32, %rdi
8 cmp $0x90abcdef, %edi
9 cmovne %r8, %rax

10

11 cmp $0xcafebabe, %esi
12 cmovne %r8, %rax
13 shr $32, %rsi
14 cmp $0xdeadbeef, %esi
15 cmovne %r8, %rax
16

17 // Repeat for the remaining hash
18 // ...
19

20 ret

Figure 6.1: Checking whether a password hash is correct without loading the correct
hash into non-XOM memory or the register state (AT&T syntax). The 256-bit hash to
be checked is passed as 4 seperate 64-bit values, which are stored in (%rdi, %rsi, %rdx,

%rcx).

For example, consider the hash of the root user’s password, which is a popular target for
Spectre-like attacks on Linux. This hash is only used in one way: When the user makes
an authentication attempt, the authenticator checks whether the hash of the password
the user entered matches the correct password hash. Apart from this, the correct hash is
not used in any kind of computation or algorithm.
Instead of encoding the hash into mov instructions, it is therefore possible to encode
it as a series of cmp instructions. The resulting code can then be executed to check
whether the user’s hash matches the correct hash. See Figure 6.1 for an example of how
this could be implemented for a 256-bit hash value.
If done correctly, this reduces the attack surface to a minimum, as the hash is only in
readable memory or the register state when the function is initialized, and when an
authentication attempt with the correct password is in progress. The short time window
in which this occurs makes most transient execution attacks impractical, especially if the
code is also otherwise hardened against maliciously induced speculation.
Nevertheless, this approach is not without its limitations. In contrast to IBRS or Retpo-
line, which can protect an entire program, XOM-based schemes only protect individual
values. While effective for encryption keys or password hashes, applying this concept to
entire memory regions is impractical, if not impossible. Certain types of attacks, such as
those breaking ASLR by disclosing code pointers with Spectre, are therefore still possible.
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6.1.3 Copyright Enforcement and DRM

Digital Rights Management (DRM) systems aim to enforce the copyright associated
with remotely distributed media, typically by preventing unauthorized copying through
cryptographic means. This leads to a highly unusual threat model, in which devices must
protect media files from their rightful owner, instead of an attacker in the traditional
sense. To achieve this, DRM systems usually encrypt media before it is delivered, and
ensure that decryption can only occur in a highly controlled environment to prevent
misuse of the encryption key.
Where supported, they utilize the isolation and remote attestation features of TEEs for
this purpose [80]. On mobile devices, where TEEs like ARM’s TrustZone are widely
supported, this scheme sees widespread use. However, in environments where TEEs are
unavailable, DRM systems instead have to rely on software-only mechanisms, which can
at best obfuscate how keys are managed. Software-only DRM systems are thus prone to
a variety of attacks, many of which were even demonstrated in practice [80].
While XOM-based techniques like Key Locking cannot solve this issue in its entirety,
they can mitigate many problems that DRM systems typically face in the absence of
a TEE. Most importantly, an encryption key that is locked into EPT-XOM cannot be
retrieved again, not even by the kernel. Leaking the encryption key is thus only possible
by tampering with the hypervisor. This is far more difficult than manipulating the kernel
of a rich operating system, as hypervisors like Xen typically do not allow users to install
driver modules, and lack debugging or introspection features. Hence, guests cannot alter
a running hypervisor’s behavior without exploiting security vulnerabilities, meaning that
keys managed by the hypervisor are fully inaccessible.
DRM systems can utilize this property to protect encryption keys reliably. In such a
scheme, the client-side of media key exchanges occurs within the hypervisor, ensuring
that the keys are never directly accessible from within a guest. These keys are made
available to guests as XOM-protected code segments, thus allowing them to use the keys
while preventing unauthorized disclosure. However, to guarantee the security of this
scheme, it is also necessary to solve the following challenges:

• The integrity of the hypervisor upon startup must be guaranteed.

• There must be a way to reliably establish a shared root of trust between the media
distributor and (only) the hypervisor.

• Measures must be in place to prevent malicious usage of the XOM-protected code
segments.

The first challenge is relatively easy to solve if a TPM is available. In this case, it is
possible to remotely attest the software stack’s integrity to the media distributor, allowing
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Figure 6.2: A high-level overview of the proposed key exchange for DRM. The media
distributor and the client hypervisor first exchange a shared Root of Trust ( ), which
is later used to exchange media keys ( ). These media keys are made available to

guests with Key Locking.

them to decide whether they trust the user’s configuration. In the absence of a TPM
however, this cannot be reliably verified, which constitutes a major limitation of this
scheme.
The second challenge, although less straightforward, can also be solved with a TPM.
Distributors can verify the integrity of the software stack down to the DRM system’s user
mode process, guaranteeing that it relays the key exchange messages to the hypervisor
instead of handling them in the kernel or in user mode. This must occur before and after
the root of trust is exchanged, to guarantee the system’s integrity during the entirety of
the process. See Figure 6.2 for a high-level schematic of how key-exchanges work in such
a system.
After this root of trust is in place, no further attestation is necessary. Since the hypervisor’s
behavior cannot be altered except through a vulnerability, the distributor can confidently
assume that any keys exchanged based on the shared root of trust are handled in the
intended manner. As mentioned before, this would not be the case with the kernel of a
feature-rich operating system, as their behavior can be easily altered after the root of
trust is exchanged.
This leaves only the third, and perhaps most difficult challenge: Ensuring that the guest
instances do not use XOM-protected keys to decrypt files in unintended ways. The
easiest way to solve this problem would be to forego the use of XOM entirely, integrating
the entire decryption logic into the hypervisor. However, this is usually not an option,
as hypervisors strive to be as minimal as possible. Integrating an entire DRM system
directly into the hypervisor would massively contribute to bloat, and affect all users by
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increasing the hypervisor’s memory footprint. It is also not exactly generic, as different
proprietary DRM systems would require different hypervisor implementations. A simple
key exchange protocol, on the other hand, is generic and requires relatively little code to
implement, making it the preferable option.
The only way to prevent misuse of the XOM-protected code is therefore either to rely
on the kernel and user-mode components of the DRM system or to integrate context
validation checks into the XOM-protected code itself. The first option, while difficult to
circumvent if done right, is not entirely reliable, as the guest’s state can theoretically be
altered by the user in arbitrary ways through kernel drivers and debugging features. A
sufficiently motivated attacker might therefore find a way to disable these mechanisms
before they can unmap the XOM pages, allowing them to decrypt media without
authorization. The second option, although harder to manipulate, is more restricted
in its capabilities. While it might for example be possible to embed a TSC-relative
timestamp into the XOM page, making decryption only possible at certain times, more
involved context validation is made difficult by the various rules the XOM-protected code
has to follow to prevent control flow manipulation. Therefore, neither of the approaches
is perfectly reliable, although they can make misuse more difficult.
However, even if the XOM-protected code were perfectly protected from misuse, this
hypervisor-based DRM scheme would not be without limitations. Firstly, it depends on
the presence of a TPM for integrity verification, which is not always given. It therefore
only provides tangible security guarantees in a setting where a TEE is not available, but
a TPM is. Even if a TPM is present, reliably attesting the system’s software stack is
difficult, and requires extensive software support. Secondly, the scheme assumes that
the behavior of a running hypervisor is hard to manipulate. While this is true for thin
hypervisors, or standalone hypervisors like Xen, it does not hold for hypervisors that are
part of a larger operating system, such as the Linux KVM or Microsoft’s HyperV.
Another issue is that the decrypted media ends up in readable memory at some point, as
playing it correctly would hardly be possible otherwise. While TEE-based DRM schemes
are prone to this as well, they do not have to adhere to the highly restrictive rules
XOM-protected code has to follow to ensure confidentiality, and can therefore execute
much more involved programs in a trusted environment. This allows them not only to
decrypt media files securely, but also to decode them into analog data such as frame
buffers and audio signals before making them available to less trusted code. Although it
can be captured with external hardware or special software tools, re-encoding this analog
data into a redistributable format induces a loss of quality, which does not occur when
XOM-protected code is used for decrypting the files only.
However, despite the many weaknesses and pitfalls that come with a XOM-based DRM
scheme, XOM can still be immensely useful as a hardening feature. Although misuse of
the XOM code is difficult to prevent entirely, it significantly raises the difficulty level
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of decrypting a DRM-protected file compared to software-only solutions. Even if the
hypervisor is not a trusted component or the key exchange occurs in the guest, actually
leaking decryption keys requires significantly more effort than simply reading it from
kernel-accessible memory. Note that even the most involved DRM schemes cannot fully
prevent unauthorized redistribution, as it is always possible to capture and reencode
copyright-protected media with external hardware. Therefore, DRM systems should be
seen more as a deterrent than a reliable security measure. In this context, any technique
increasing the difficulty of unauthorized redistribution at little cost might prove useful.

6.1.4 Tamper-resistant Code

A noteworthy side effect of EPT-enforced XOM is that it provides near-absolute tamper
resistance. Once locked, no modifications to an EPT-XOM page are possible, apart
from releasing it again. A similar mechanism can also be created with EPT-enforced
read-only pages, if used similarly to Page Locking. Potentially, this may prove useful in
scenarios where an attacker abuses interfaces such as the WriteProcessMemory function
on Windows [81] or ptrace on Linux [37] to manipulate a program’s runtime behavior.
A typical example of this is cheating in online video games. Some players may seek
an unfair advantage by modifying the game’s memory state, for example in making
the opponent’s character model visible through walls in a competitive shooter-style
game. In an effort to prevent this, many games employ self-monitoring code to detect
such modifications. Over the years, this has led to an arms race with cheat software
developers, who utilize increasingly sophisticated methods to disable any self-monitoring
logic through further memory manipulation. In turn, anti-cheat software now often
requires kernel privileges to supervise the game’s state externally, which has raised
numerous concerns about privacy and security in the past [82].
EPT-enforced page locking can eliminate the need for privileged supervision in this
context. If the game’s code is placed in XOM, attempted alterations are prevented by
hardware, even if performed by the kernel. Therefore, self-monitoring software can run
as part of the game’s process without being at risk of external intervention. Modifying
the code is not possible, and modifying the non-XOM memory segments triggers the now
unalterable self-monitoring logic. This makes any external modification of the game’s
memory state challenging at best, given that the self-monitoring code is well-programmed
and cannot easily be subverted by data-only attacks.
While there is no guarantee of the code’s integrity upon startup, validating the code
against a cryptographic signature in the operating system can provide these guarantees.
These integrity checks can be implemented generically without knowledge of the game’s
internal workings, and many operating systems already implement similar integrity checks
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for other security-related purposes [83]. Through the use of a TPM, it is even possible to
remotely attest the integrity of the operating system itself, making it possible to deny
service to players with an untrusted software stack. A kernel module provided by the
game developer is therefore no longer required.
When applied to other types of software that might benefit from tamper-resistance, such
as antivirus programs or user-mode authentication mechanisms, this scheme unfortunately
proves less useful. In contrast to video game cheating, the attacker’s goal in this scenario
is usually not to modify the program’s behavior in a specific way, but to disable or
circumvent it altogether. As access to the interfaces described above is typically restricted
to privileged users and the user of the target application, an attacker with access to
them has many other means at their disposal to achieve this effect. Antivirus software
can simply be stopped, and privilege escalation through subversion of an authenticator
makes no sense if the authenticator and the attacker already share the same privilege
level. The effectiveness of EPT-enforced memory protection in this scenario is therefore
also limited.

6.1.5 XOM as a Defense against Reverse Engineering

Another prevalent use of XOM is as a defense measure against reverse engineering. This is
particularly common in ARM-based embedded systems, where manufacturers sometimes
make an effort to hide the inner workings of their firmware [1]. This idea is also applicable
to x86_64. For example, an Infrastructure as a Service (IaaS) or Platform as a Service
(PaaS) provider might be interested in letting their clients use a proprietary shared
library while protecting it against reverse engineering. EPT can provide this protection
if the hypervisor only makes these libraries available to instances in the form of XOM.
However, as clients are typically given kernel privileges, or at least debugging capabilities
in their IaaS instance, XOM cannot provide strong security guarantees in this setting.
Interrupt-driven Code Recovery attacks are capable of restoring a protected program
with a high degree of accuracy. The only reliable countermeasure is Register Clearing,
which imposes a performance penalty on the entire guest system and requires special
recovery measures in the library to prevent crashes. There is also the issue of data written
to readable memory by the library, which can aid an attacker in their reverse-engineering
effort. For example, by monitoring the stack, they could access return addresses and thus
recover the call trace. Finally, cache-based side channel attacks can reveal information
about the library’s control flow structure and data access patterns.
Nevertheless, XOM might be of use as a hardening technique. While it cannot prevent
reverse engineering entirely, any reverse engineering effort becomes considerably more
difficult if the code is XOM-protected. For example, although Interrupt-driven Code
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Recovery can accurately recover a program, the vast computational resources required for
mounting such an attack on large stretches of arbitrary code could make it non-viable for
many attackers. In combination with other obfuscation techniques, XOM can therefore
serve as a strong deterrent against reverse engineering. The only major downside of
XOM in this context is the slight performance overhead of address translations. However,
depending on how critical the performance of the protected library is to the hosting
provider, this might not be an issue.

6.2 Limitations

6.2.1 Limitations of EPT-enforced XOM

While EPT provides strong security guarantees, it is not free of limitations. Perhaps the
most obvious drawback of EPT is that it is limited to virtual machines, which prevents
its usage in fully native environments. However, this limitation is easy to overcome with
a so-called thin hypervisor, which only virtualizes a single guest. Using hardware-assisted
virtualization, thin hypervisors can be implemented with as little as 2.5 KLOC, and thus
have a very small attack surface [84]. Also, some operating systems, such as Windows,
already incorporate virtualization into their security model [85], making the adoption of
EPT-based XOM somewhat easier.
Another limitation is that EPT is only available on Intel platforms. While AMD’s
SEV-SNP extensions make SLAT-enforced XOM possible as well, these extensions are
less widely supported than EPT. Therefore, Intel users are more likely to benefit from
the security guarantees of SLAT in this context.
Moreover, the security of EPT depends entirely on the integrity of the hypervisor. If
an attacker can somehow manipulate the hypervisor’s behavior, for example through a
memory safety issue, they can easily disclose secrets protected by EPT. Schemes like
Key Locking, which depend on EPT-XOM for the confidentiality of data, are therefore
inherently weaker than schemes utilizing hardware-based features like TEEs or Intel’s Key
Locker. Where available, these features should therefore be preferred over XOM-based
Key Locking. However, note that hypervisors are typically much harder to compromise
than the kernel of a feature-rich operating system, and can thus still provide a high level
of security.
Finally, there is the performance overhead of code address translations with EPT-enforced
XOM. As shown in Section 5.1, this can have a noticeable impact on real-world software,
making EPT-XOM somewhat ill-suited for protecting entire programs in performance-
critical applications. This effect can likely be mitigated with 2 MB code pages, although
this was not experimentally verified. Applications like Key Locking, where the code
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cannot extend beyond code page boundaries for security reasons, are unaffected by this
as well.

6.2.2 Limitations of Key Locking

Besides the limitations of EPT-XOM, Key Locking in particular has some additional
limitations that are noteworthy. Firstly, Key Locking is only secure if programs follow
the highly restrictive rules from Section 3.3. While this is easy with AES-NI, the HMAC
implementation shows that the performance of more involved code can suffer from these
restrictions. It should also be noted that programming code that is secure in the context
of Key Locking is impossible with any conventional programming language. To reliably
ensure that the control flow protection rules are upheld, programmers must use assembly
languages instead, which makes the development of more involved Key Locking imple-
mentations challenging and error-prone.
Furthermore, Key Locking depends on the L1 iTLB not being shared between hyper-
threads. As discussed in Section 3.3, the guest kernel could otherwise map a different code
page to the EPT-XOM page’s virtual address while it is being executed, thus hijacking
control flow. This property is not always made public by CPU manufacturers, and must
instead be reverse-engineered by security researchers. Therefore, it is sometimes unclear
whether it is safe to depend on EPT-XOM for confidentiality. On CPUs where the L1
iTLB is known to be shared, users should not depend on Key Locking for dependable
security at all, although it might still be useful as a hardening feature.

6.3 Potential for Future Work

6.3.1 XOM as a Spectre Mitigation

Although this thesis discusses XOM as a Spectre mitigation and provides a foundation
for building such defenses with libxom, no effort is made to integrate this defense into
real-world software. As modifying the cryptography code of projects like OpenSSL or
the Linux kernel on such a fundamental level is a highly time-consuming process, and
this work’s focus lies more on evaluating attack vectors and conceiving novel applications
for XOM, this is not further pursued. However, studying the implementation challenges
and performance impact of this defense may provide an interesting research opportunity,
since the practicability of XOM as a Spectre defense largely depends on these aspects.
Furthermore, it may be interesting to perform a more systematic study on which types
of secrets can be protected this way. This thesis covers encryption keys and data
used for authentication, like password hashes. However, XOM could also be useful in
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protecting other kinds of data, for example in the environment of a web browser. This
includes Session IDs, passwords, API tokens, and sensitive personal data, to name a few.
As web browsers are popular targets for Spectre attacks, investigating the feasibility
and practicability of XOM-based defenses in this context may provide further research
opportunities.
Finally, XOM as a Spectre defense may be applicable to architectures other than x86_64.
The only precondition is that data loads from XOM are not transiently executed. Whether
this is the case for other architectures that support XOM, like AArch64, is yet to be
determined. Note however that popular adoption of XOM on AArch64 currently seems
unlikely, due to its role in breaking Privileged Access Never (PAN), ARM’s equivalent to
Supervisor Mode Access Prevention [86].

6.3.2 Key Locking

As with XOM as a Spectre defense, no efforts are made to integrate Key Locking into real-
world software, therefore providing further research opportunities. Due to the application
potential of Key Locking in the context of DRM systems, it may also be interesting to
investigate the implementation challenges of a scheme as described in Section 6.1.3.
However, perhaps the most intriguing research opportunity lies in the investigation of
Key Locking for public key cryptography. Implementations for public key signature
schemes that do not write key material to memory already exist (see Section 7.4),
although they do not follow the strict control flow protection rules for Key Locking
implementations. The main question in this context is whether such an implementation
is practical. HMAC with SHA256, which is arguably easier to implement, and less
affected by the programming restrictions, already suffers a dramatic performance penalty
with Key Locking. With schemes like RSA or Ed25519, it is therefore possible that a
Key Locking implementation is so slow that it becomes entirely unpractical. If deemed
practical, however, Key Locking could be useful in a variety of additional protection
schemes, and provide leakage resistance to private keys.
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Related Work

7.1 Other Ways to Create Execute-Only Memory on x86_64

While the aforementioned approaches using MPK and SLAT are, to the best of my
knowledge, the only ways to enforce execute-only memory purely in x86_64 hardware,
there are other methods to create it with the assistance of software-implemented fault
handlers.
Sparks and Butler propose ShadowWalker [87], a technique for hiding kernel rootkits
using memory subversion. ShadowWalker creates a so-called split TLB, in which the state
of the instruction TLB differs from the state of the data TLB. This is achieved through
a special page fault handler, which yields different address translations depending on
whether the access type is read or execute. Once set up, the split TLB causes read
accesses to be translated differently from execute accesses, allowing a kernel rootkit
to hide its code from detectors. The concept of a split TLB also allows for creating
execute-only memory, with read accesses yielding static data instead of code [4]. However,
despite a design with separate data and instruction TLBs being the de-facto standard for
x86_64, many recent CPUs also feature a shared last-level TLB, which caches translations
for both execute and read accesses [30]. This makes the split TLB approach unreliable
on recent hardware [88], hence why it is not considered in this thesis.
Backes et al. propose a different technique [2], which keeps a sliding window of the most
recently used code pages readable, while the rest is marked as non-present. Once a new,
non-present code page is accessed, the page fault handler determines whether a read
or execute access occurred, and maps the page only in the latter case. The last code
page in the sliding window is then marked as non-present again, to keep the window’s
length constant. While this mechanism is suitable as a defense against code-disclosure
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attacks aiming to disclose large portions of code, for example as a prerequisite for return-
oriented programming, small portions of code remain readable at all times. It is therefore
unsuitable for applications like Key Locking, where keeping even small segments of code
readable would undermine security.

7.2 Execute-Only Memory as a Countermeasure for Code-Reuse
Attacks

Perhaps the most obvious application for execute-only memory is the prevention of code
disclosure, which is often necessary as a precursor for code-reuse attacks. Exploitation
techniques like Blind-ROP [18] and JIT-ROP [17] all involve a code-disclosure step. XOM
was therefore proposed as a countermeasure against these attacks, by Backes et al. [2],
with schemes like HideM [4], NEAR [89], and Heisenbyte [90] reiterating the idea with
different XOM-enforcement techniques.
However, simply protecting code with XOM is often an inadequate defense against
code-reuse attacks, as the code layout of publicly available software is usually known to
an attacker. JIT-compiled code is also affected by this, as attackers can leverage code that
is compiled in a predictable way [91]. This issue led to the emergence of leakage-resistant
code diversity schemes, in which code undergoes a diversification process before being
loaded into XOM. These schemes randomize the program’s layout on a fine-grained level,
necessitating either code or code pointer disclosure to successfully mount a code-reuse
attack.
One of the most comprehensive techniques in this family is Readactor, which was pro-
posed by Crane et al. in 2015. Readactor combines code diversification and XOM
with code-pointer hiding techniques, preventing an attacker from disclosing the code
layout through pointer leakage. Diversification with Readactor involves a variety of
techniques, such as function permutation, equivalent instruction substitution, stack layout
randomization, and randomized insertion of nop instructions. This ensures that every
instance of a Readactor program is unique so that a working gadget chain for one instance
cannot be used on another. The layout of the code is then hidden using EPT-based
execute-only memory. Additionally, to prevent an attacker from making inferences about
the code’s layout by leaking code pointers, all code pointers stored in memory point to a
XOM-protected trampoline, thus hiding the target code’s true location. In combination,
these primitives make return-oriented programming near-impossible, as an attacker is
unable to retrieve any meaningful information about the code’s layout, even with a
powerful disclosure primitive.
However, Readactor’s extensive diversification measures also impose a non-negligible
performance overhead on the program, with an average runtime increase of 6.4 % for the
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SPEC CPU2006 benchmark. Furthermore, while code pointers themselves are protected
from unauthorized disclosure, trampoline pointers are still stored in readable memory.
The assumption here is that they cannot easily be associated with the function their
trampoline points to. Rudd et al. proved this assumption wrong by demonstrating that a
trampoline pointer’s location in memory is often enough to determine its target function,
thus allowing for whole-function reuse attacks [92]. While subsequent work like R2C

addresses this by also randomizing the data layout, this comes at the cost of an even
greater performance overhead [8].
Several proposals were made to apply Readactor-like diversification schemes to kernel
code [5–7]. As there are many ways in which attackers could leak code from the kernel,
all of these proposals leverage XOM in some form as a means to prevent this. However,
none of these schemes have seen popular adoption in real-world applications to date,
likely due to the inherent impracticability of diversifying the kernel for every system
individually.
The main contribution that this thesis makes in the context of these schemes lies in pro-
viding performance metrics for the different XOM-enforcement methods. XOM enforced
through EPT can cause runtime overhead on a microarchitectural level. Therefore, MPK
should be the preferred XOM-enforcement mechanism where available, despite its weaker
security guarantees. In combination with a well-designed diversity scheme, this should
not make much of a difference, as an attacker must first locate a wrpkru gadget to break
MPK. If this is not possible, the security of MPK should be just as strong as the security
of EPT. However, as these guarantees largely depend on the design of the underlying
diversity scheme, a research topic worthy of its own thesis, this work does not further
investigate these properties.

7.3 XOM for Protecting Intellectual Property

Many modern microcontrollers with integrated flash memory features some sort of
readout protection mechanism. Firmware in particular is information that hardware
manufacturers often seek to protect, as the development of this code is costly, and may
give competitors a commercial advantage if they can obtain it. However, this creates a
conundrum: How can software be executed while preventing unauthorized readouts at
the same time? Many hardware manufacturers choose to employ XOM as a means to
solve this problem. While not particularly common on x86_64, XOM is therefore widely
used and deployed in ARM-based embedded systems [1].
This widespread deployment sparked research efforts into the security of XOM-based
defenses. In 2019, Schink and Obermaier proposed Interrupt-based Code Recovery, which
is perhaps the most comprehensive attack on XOM to date [1]. This thesis already



66 Chapter 7 Related Work

discusses Interrupt-based Code Recovery in depth, and devises a modified version suitable
for complex instruction sets like x86_64 (see Section 5.2.1). The primary difference
between this modified version and the original approach by Schink and Obermeier is
the use of a constraint solver. Whereas the original version simply enumerates plausible
instruction instances based on a set of primitive rules, the complex nature of x86_64
demands a more sophisticated means of deriving instructions. It is therefore necessary to
incorporate detailed knowledge about instruction semantics into this process, which a
constraint solver can do with relative efficiency. While this is computationally expensive,
the results of this thesis demonstrate that Interrupt-driven Code recovery is not only a
threat on RISC architectures but also on CISC architectures like x86_64.

7.4 Memory-less Encryption

While this work utilizes encryption without writing secrets to readable memory, it is by
no means the first to do so. Initial efforts to design such schemes were made to defend
against cold-boot attacks, which utilize the property that DRAM retains its contents
for a short time after losing power. This enables attackers with physical access to a
device to restart it, and then dump a memory image to obtain cryptographic secrets
that would otherwise be protected by software. Therefore, a scheme that does not write
cryptographic secrets to DRAM mitigates such attacks. Note that XOM-based Key
Locking is not a mitigation against cold-boot attacks, as the key is ultimately still stored
in DRAM.
Müller et al. propose TRESOR, which stores encryption keys in the CPU’s debug
registers [93]. These registers are inaccessible without kernel privileges and reliably reset
their contents upon a reboot. As with this work’s AES implementation, encryption
with TRESOR occurs solely in the CPU’s register state, utilizing AES-NI. However,
while TRESOR successfully protects against cold-boot attacks and unprivileged local
attackers, privileged attackers can still access the debug registers and thus disclose the
key. TRESOR is hence not a scheme suitable for replacing TEEs.
Works like PRIME [94], Copker [95], and Mimosa [96] apply the concept of memory-less
encryption to public key cryptography. All of them utilize TRESOR to encrypt key
material before storing it to memory, similar to how this work’s HMAC implementation
encrypts its internal state. During the encryption process, PRIME uses the AVX registers
to store the intermediary results, whereas Copker uses the L1D cache. However, this
limits PRIME to small key sizes, while Copker’s security strongly depends on poorly
documented behavior of the underlying hardware. Mimosa utilizes hardware transactional
memory instead, which is typically implemented in the CPU and thus not written to
DRAM. However, hardware support for this feature is rare, as it was disabled on
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many Intel processors to mitigate TSX asynchronous abort attacks [64]. Although still
supported by many recent data center CPUs, consumer-focused processors generally lack
this feature altogether.
Memory-less implementations for elliptic curve cryptography schemes also exist. Yang
et al. demonstrate that the ECDH key exchange algorithm can be implemented within
the CPU’s register state without performance overhead [97]. As with TRESOR, private
keys in this scheme are stored in the debug registers. Fu et al. propose RegKey, which
partially implements memory-less elliptic curve signature algorithms [98]. RegKey only
performs simple prime field operations in the registers, whereas the more involved elliptic
curve group operations still utilize regular memory. This is sufficient to ensure that
private keys are not stored in DRAM as plain text. However, RegKey only protects
against one-shot memory disclosure attacks, with persistent software-based attacks still
allowing for key disclosure.





Chapter 8

Conclusion

At its core, XOM is a simple and lightweight protection scheme. This simplicity makes
XOM highly versatile, and easy to implement in hardware. As such, it is surprising to
see how rarely it is used in practice.
The main conclusion of this thesis is that the application potential of XOM on x86_64
is much broader than previously assumed. For example, XOM is useful not only in
mitigating code reuse attacks but also in mitigating Spectre and Meltdown attacks.
Furthermore, Key Locking can provide security guarantees that would usually require a
TEE, achieving strong leakage resistance for encryption keys on hardware where such
facilities are unavailable. Although not as strong of a defense as TEEs, this may be
of use as a hardening feature in DRM systems. Finally, EPT-based XOM can help
against unauthorized reverse engineering and even provides tamper resistance in certain
scenarios.
The only factor that significantly limits the usefulness of these schemes is poor or missing
hardware support. While workarounds using EPT or MPK can make XOM available
to software, these solutions are far less practical than protection schemes with proper
MMU support, like W � X. Nevertheless, with MPK support in particular becoming
more common in recent years, it is entirely possible that XOM will see more widespread
adoption in the not so distant future. Additionally, techniques like Page Locking leverage
not only EPT but also other hypervisor-specific features like Register Clearing. Therefore,
the lack of secure XOM enforcement methods in non-virtualized environments is not an
issue in for these applications.
Despite all limitations, XOM’s utility as a security hardening feature therefore remains
substantial. While subversion of the discussed schemes is often possible in theory (e.g.,
by manipulating the hypervisor or through attacks like Interrupt-driven Code Recovery),
they make practical exploitation significantly more challenging. Given XOM’s low runtime
overhead, it is therefore hard to deny its severely underutilized potential.
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Appendix A

Code Example for libxom

1 # include <errno .h>

2 # include <stdio .h>

3 # include <string .h>

4 # include " libxom .h"

5
6 // This is the function we want to move into XOM
7 // We link it into the . data section , so that we can overwrite it later
8 // Note that in a real - world application , such functions are typically
9 // created at runtime

10 unsigned int __attribute__ (( section (".data")))

11 secret_encryption_function ( unsigned int plain_text ) {

12 // Just XOR to keep it simple
13 return plain_text ^ 0 xcafebabe ;

14 }

15 void __attribute__ (( section (".data"))) secret_encryption_function_end (void) {}

16
17
18 int main(int argc , char* argv []) {

19 // Get the secret function 's size
20 const size_t secret_function_size =

21 ( size_t ) secret_encryption_function_end -

22 ( size_t ) secret_encryption_function ;

23
24 unsigned int (* secret_function_xom )( unsigned int );

25 int status ;

26
27 // 'struct xombuf ' is an anonymous struct representing one or more XOM pages
28 struct xombuf * xbuf;

29
30 unsigned int plain_text = 0 xdeadbeef ;

31 unsigned int cipher_text ;

32
33 // Abort if XOM is not supported
34 if( get_xom_mode () == XOM_MODE_UNSUPPORTED )

35 return 1;

73
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36 // Allocate a XOM buffer consisting of a single page
37 xbuf = xom_alloc ( PAGE_SIZE );

38 if (! xbuf)

39 return errno ;

40
41 // Write the secret function into the XOM buffer at offset 0
42 status = xom_write (xbuf , secret_encryption_function , secret_function_size , 0);

43 if( status <= 0)

44 return errno ;

45
46 // Lock the XOM buffer , function returns a pointer to the XOM page itself
47 secret_function_xom = xom_lock (xbuf );

48 if (! secret_function_xom )

49 return errno ;

50
51 // Overwrite the original function , key is now purged from readable memory
52 memset ( secret_encryption_function , 0, secret_function_size );

53
54 if( get_xom_mode () == XOM_MODE_SLAT ) {

55 // Mark the page for full register clearing if supported
56 // The second parameter can be set to 0 for vector - register clearing
57 status = xom_mark_register_clear (xbuf , 1, 0);

58 if ( status < 0)

59 return -status ;

60 }

61
62 // Call the function in XOM
63 // The following block restarts when full register clearing occurs
64 expect_full_register_clear {

65 cipher_text = secret_function_xom ( plain_text );

66 }

67
68 printf (" Cipher Text: 0x%x\n", cipher_text );

69
70 // Free the XOM buffer
71 xom_free (xbuf );

72
73 return 0;

74 }

The above example is a demo program using libxom, written in C. It first allocates a
XOM buffer, fills it with the code of a secret function, and locks it. The XOM buffer is
then marked for full register clearing if supported in the current environment. Note that
the function in XOM is called inside of an expect_full_register_clear block, which
starts from the beginning when full register clearing occurs.
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